
ATARI® PERSONAL COMPUTER SYSTEM
•

HARDWARE MANUAL

ATAR I® A Warner Communications Company ~

Every effort has been made to ensure that this manual is an
accurate document. However, due to the ongoing improvement
and update of the computer software and hardware, ATARI, INC.
cannot guarantee the accuracy of printed material after the
date of publication, nor can ATARI, INC. accept responsibility
for errors or omissions.

I.

II.

III.

IV.

v.

VI.

TABLE OF CONTENTS

INTRODUCTION. • . • • • I. 1

DESCRIPTION OF HARDWARE •••••••••••••••••••••• II.1

A. ANTIC and CTIA ••••••••• •••••••••••••• ••• II.1
B. POKEY •••••••••••••••••••••••••••••• ••••• 11.23
C. SERIAL PORT ••••••••••••••••••••••••••••• II.25
D. INTERRUPT SYSTEM •••••••••••••••••••••••• II.28
E. CONTROLLERS ••••••••••••••••••••••••••••• II.30

HARDWARE REGISTERS •••••••••••••••••••••••••• III .1

A. PAL••••••••••••••••••••••••••••••••••••III.l
B. INTERRUPT CONTROL •••••••••••••••••••••• III.1
C. TV LINE CONTROL •••••••••••••••••••••••• III.3
D. GRAPHICS CONTROL •••••••••••••• ••••••••• III.4
E. PLAYERS AND MISSILES ••••••••••••••••••• III.9
F. AUDIO • ••••••••••••••••••••••••••••••••• I I I. 12
G. KEYBOARD and SPEAKER ••••••••••••••••••• III.15
H. SERIAL PORT••••••••••••••••••••••••••••III.17
I. CONTROLLER PORTS ••••••••••••••••••••••• III.19

SAMPLE DISPLAY PROGRAM ••••••••••••••••••••••• IV.1

HARDWARE REGISTER LISTS ••••••••••••••••••••••• V.1

A. ADDRESS ORDER. •••••••••••••••••••••••••••V.1
B. ALPHABETICAL ORDER ••••••••••••••••••••••• V.S

FIGURES • ••••••••••••••••••••••••••••••••••••• VI. 1

A. 11EMORY MAP • ••••••••••••••••••••••••••••• VI. 1
B. NTSC and PAL DISPLAY •••••••••••••••••••• VI.2
C. SCHEMATICS • •••••••••••••••••••••••• •••• • VI. 3

APPENDIX A:

APPENDIX B:

APPENDIX C

USE OF PLAYER/MISSILE GRAPHICS
WITH BASIC

MIXING GRAPHICS MODES

PINOUTS

ii

l· INTRODUCTION

The ATARI (R) 800™ and ATARI 400™ Personal Computer Systems
contain a 6502 microprocessor, 4 I/O chips, operating system ROM, expandable
RAM, and several MSI chips for address decoding and data bus buffering.
This manual is primarily intended to describe the 4 I/O chips in sufficent
detail to allow experienced programmers to create assembly language programs,
such as video games. All four Input/Output chips are controlled by the
microprocessor by writing directly into their registers which are decoded
to exist in microprocessor memory space just as RAM does. These I/O chips
can also be interrogated by the microprocessor by reading similar registers.

Many registers are write only and cannot be read after they are
written. In some cases, reading from the same address gives the value
contained in a separate read only register. Some write only registers are
strobes. No data bits are needed in this case since the presence of the
address on the bus is what triggers the requested action. The usual
convention is to use the STA (Store Accumulator) instruction for such
registers. For example, STA WSYNC performs the wait for Sync function.
STX (Store X) or STY (Store Y) would work just as well. In BASIC, a POKE
could be used (the data could be anything). Reading a register is accomp
lished by using any of the load instructions (LDA, LDX etc.). In BASIC
a PEEK would be used. When the hardware register names are defined in an
equate list, the programmer can refer to the registers by name rather than
using the addresses directly.

It is really not necessary for the programmer to know which
I/O functions are performed by which of the 4 chips, however it
does help in learning these functions.

This manual should be used in conjunction with the Operating
System (OS) Manual, a 6502 programming manual, and the ATARI 400/800
Basic Reference Manual.

CHIP NAME

ANTIC

CTIA

FUNCTION

DMA(Direct Memory Access) control
NMI(Non-Maskable Interrupt) control
Vertical and Horizontal fine scrolling
Light pen position registers
Vertical line counter
WSYNC(wait for horizontal sync)

Priority control (display of overlapping objects)
Color-Lumimance control (colors and brightness assigned
to all objects including DMA objects from ANTIC)
PLAYER-MISSILE objects (4 players and 4 missiles)

Graphics registers
Size control
Horizontal position control

Collision detection between all objects
Switches and triggers (miscellaneous I/O functions)

I.l

CHIP NAME

POKEY

PIA

FUNCTION

Keyboard scan and control
Serial communications port (bidirecti mal)
Pot scan (digitizes position of 8 indepen~~nt pots)
Audio generation (4 channels)
Timers
IRQ (maskable interrupt) control from peripher? : s
Random number generator

Controller (Joystick) jacks read or write
Peripheral control and interrupt lines
IRQ (maskable) interrupt control from peripherals

Section II describes the hardware in some detail, including the
various graphics modes. Section III lists the hardware registers one at a
time, describing what each bit is used for. It is organized by functional
groups (interrupts, graphics, audio, etc.). Section IV contains a sample
display program. Section V contains various figures and block diagrams of
the system. Sections VI and VII list the hardware registers in address
order and alphabetical order. Section VII includes hex and decimal
addresses, the OS shadow registers and the page numbers where more infor
mation can be found.

1.2

II. DESCRIPTION OF HARDWARE

A. ANTIC AND CTIA

TV Display: The ANTIC and CTIA chips generate the television
display at the rate of 60 frames per second on the NTSC (US) system.
The PAL (European) system is different and is described in the section
on NTSC vs PAL. Each frame consists of 262 horizontal TV lines and each
line is made up of 228 color clocks, as shown in figure VI-3. The 6502
microprocessor runs at 1.79 MHz. This rate was chosen so that one
machine cycle is equivalent in length to two color clocks. One clock
is approximately equal in width to two TV lines.

In any graphics mode, the display is divided up into small squares
or rectangles called pixels (picture elements). The highest resolution
graphics mode has a pixel size of 1/2 color clock by 1 TV line. A
sample display list is given in section IV.

The current TV line may be determined by reading the vertical counter
(VCOUNT). This register gives the line count divided by 2. There are 262
lines per frame so VCOUNT runs from 0 to 130 (0 to 155 on the PAL system).
The 0 point occurs near the end of vertical blank (see figure VI.5).
Vertical blank (VBLANK) is the time during which the electron beam returns
back to the top of the screen in preparation for the next frame. The
Atari 800 does not do interlacing, so each frame is identical unless
the program which is being executed changes the display. Vertical sync
(VSYNC) occurs during the fourth through sixth lines of vertical blank
(VCOUNT • hex 7D through 7F). This tells the TV set where each frame
starts. After VSYNC, there are 16 more lines of VBLANK for a total of 22
lines of VBLANK. The display list jump and wait instruction (to be
described later) causes the display list graphics to start at the end of
VB LANK.

Operating System (OS): The ATARI 400/800 comes with a lOK Operating
System (OS) in ROM. The OS affects some of the hardware registers, so
it will be mentioned from time to time in this manual. Refer to the OS
manual for more details. The OS descriptions in this manual apply to the
version that was being distributed when this manual was written.

The OS supports most of the hardware graphics modes (BASICS, GRAPHICS,
PLOT, and DRAWTO commands). The OS always displays 24 background lines after
the end of vertical blank. This convention is used at Atari to compensate
for television sets which overscan. Most TV's are designed so that the
edges of the picture are cut off. This is fine for ordinary broadcasts,
but with a computer it is essential for all important information to be
displayed on the screen. It is fairly common for four to eight color
clocks at the right or left edge of the picture to overscan. A TV set
that has excessive overscan may have to readjusted to obtain a satisfactory
display.

II.1

The OS uses 192 TV lines for its display and devotes the remaining
24 lines to overscan. It uses the standard display width of 160 color
clocks. The hardware will allow displays of any length, but it is recom
mended that the standards be follo~ed. The exception might be a border
or other information which is merely decorative and not essential to use
of the program.

OS Shadowing: Since many of the hardware registers are write-only
and cannot be read the OS has a number of "shadow registers" in RAM.
Every TV frame during vertical blank the OS takes the values in some of
its shadow registers, and writes them out to the corresponding hardware
register. The OS does attract color shifting on all of the color registers
if ATRACT (on OS register) is negative. This is to prevent damage to the
TV screen phosphors which can occur if the brightness is turned up too high
and the same high-luminance display is left on for a long time. The OS also
reads the joysticks and other controllers during vertical blank and stores
the results in shadow registers, so that user programs do not have to include
code to unpack the data. There are a few interrupt-related registers which
the OS changes or reads during interrupt processing. Programs usually access
the OS shadow registers instead of accessing the hardware directly. However,
the OS shadowing can be disabled by changing the vertical blank and interrupt
vectors (see OS manual).

WSYNC: In addition to a Vertical Blank Interrupt, which allows the
Microprocessor to synchronize to the vertical TV display, this system also
provides a Wait for Horizontal Sync (WSYNC) command that allows the
microprocessor to synchronize itself to the TV horizontal line rate. This
sync takes effect when the processor writes to an I/O location called
WSYNC, whenever it desires horizontal synchronization. Writing to this
address sets a latch which pulls to zero a pin on the microprocessor
called READY. When READY goes to zero the microprocessor stops and waits.
The latch is automatically reset (returning READY true) at the beginning
of the next horizontal blank interval, releasing the microprocessor to
resume program execution.

Object DMA (Direct Memory Access): The primary function of the Antic
chip is to fetch data from memory (independent of the microprocessor) for
display on the TV screen. It does this with a technique called "Direct
Memory Access" or DMA. It requests the use of the memory address and data
bus by sending a signal called HALT to the microprocessor, causing the
processor to become "TRI-STATE" (open circuit) all during the next computer
cycle. The ANTIC chip then takes over the address bus and reads any data
it wishes from memory. Another name for this type of DMA is "cycle stealing".
Once initiated, this DMA is completely and automatically controlled by the
Antic chip without need for futher microprocessor intervention.

There are two types of DMA: Playfield and Player-Missile (see Figure
II.2). The playfield DMA control circuit on the Antic chip resembles a
small dumb microprocessor. By halting the main microprocessor it can
fetch its own instructions from memory (the display list) addressed by its
program counter(display list pointer). Each instruction defines the type
(alpha character or memory map), and the resolution (size of bits on the
screen), and the location of the data in memory which is to be displayed
on the next group of lines.

II. 2

In order to begin this DMA the main microprocessor must store a
display list of instructions in memory, store data to be displayed in
memory, tell the ANTIC where the display list is (initialize the display
list point'er) and enable the DMA control flags on the ANTIC (DMACTL
register).

In addition to the playfield DMA described above, the ANTIC
chip simultaneously controls another DMA channel. This type of DMA
addresses PLAYER-MISSILE graphics data stored in memory and passes the
graphics data on to the CTIA chip graphics registers. This type of DMA
(if enabled) occurs automatically, interspersed with the playfield DMA
described previously. This PLAYER-MISSILE DMA has no display list or
instructions, and is therefore much simpler than the PLAYFIELD DMA.

In addition to the two types of display DMA, the ANTIC chip also
generates DMA addresses for the refresh of the dynamic memory RAM used
in this system. This is also completely automatic and need be consider
ed by the programmer only if he is concerned with real-time programming
where an exact count of the computer cycles is important.

Color-luminance: A color-luminance register is used on the CTIA chip
for each Player-Missile and Playfield type. Each color-lum register is
loaded by the microprocessor with a code representing the desired color
and luminance of its corresponding Player-Missile or Playfield type. As
the serial data passes through the CTIA chip it is "impressed" with the
color and luminance values contained in these registers, before being sent
to the TV display. In areas of the screen where there are no objects the
background color (COLBK) is displayed. The CTIA also does collision
detection (to be described later).

Priority: When moving objects, such as players and missiles,
overlap on the TV screen (with each other or with Playfield) a decision
must be made as to which object shows in front of the other. Objects
which appear to pass in front of other·s are said to have Priority over
them. Priority is assigned to all objects by the CTIA chip before the
serial data from each object is combined with the other objects and sent
to the TV screen.

The priority of objects can be controlled by the microprocessor by
writing into the control register PRIOR. The functions of the bits in
this register are given in the table in the PRIOR register description in
section III.

Players and Missiles: The players and missiles are small objects
which can be moved quickly in the horizontal direction by changing their
position registers. They are called players and missiles because they
were originally designed to be used in games for objects such as airplanes
and bullets. However, there are many other possible applications for
them. The four player-missile color registers, in conjunction with the
four playfield color registers and the background color register, make
it possible to display 9 different colors at the same time.

II.3

MICRO
PROCESSOR

Fi gure II. 2

OBJECTS (no objects background)

,..------It f.....__ _ ___,

l
MEMORY MAP CHARACTERS

_- __ ,. "'Player

Missile
DMA
Enable

MEMORY

0 B J E C T D I S P L A Y

II. 4

controlled by
Display list
instructions
~
:J·f

- - - -0 (DMACTL)

' Playfield
DMA Enable

S 0 U R C E S

There are a total of four players and four missiles. The four
missiles may be grouped together and used as a 5th player. These
objects are positioned horizontally by 8 horizontal position registers
(HPOS (X)). These registers may be reloaded at any time by the proces
sor, allowing an object to be replicated many times across a horizontal
TV line.

The shape of a player-missile is determined by the data in its
graphics register (GRAF (X)). Players have independent 8 bit graphics
registers. The four missiles have 2 bit registers (located within one
address). These registers may also be reloaded at any time by the
processor, although they are usually changed during horizontal blank
time. The data in each graphics register is placed on the display
whenever the horizontal sync counter equals the corresponding horizon
tal position register. The same data will be displayed every line unless
the graphic registers are reloaded with new data.

The player-missile graphic registers may be reloaded by the micro
processor (GRAF (X)), or automatically from memory with direct memory
access (DMA) (see figure II.3). The programmer must place the object
graphics in memory, write the player-missile base address (PMBASE), and
enable player-missile DMA (DMACTL, GRACTL). The transfer of object
graphics from memory to display is then fully automatic.

PMBASE specifies the most significant byte (MSB) of the address of
the player-missile graphics. The location of the graphics for each
object is determined by adding an offset to PMBASE *256 (decimal). The
bytes between the base address and the missile data are not used by
Antic, so they are available to the programmer.

Only the five most significant bits of PMBASE are used with
single-line resolution and the six most significant bits are used
with two-line resolution. This means that the location of the graphics
in memory is restricted to certain page boundaries. Two-line resolu
tion means that each byte of data is repeated for two lines. (see
DMACTL, bit 4). 640 (decimal) bytes (5X128) are required for two-line
resolution and 1280 bytes (Sx256) for one-line resolution.

Each byte in the player graphics area represents eight pixels which
are to be displayed on the corresponding line(s) of the TV screen. A
1 indicates that the player's color-lum is to be displayed in that pixel.
The graphics may be anything, not just rectangles like the ones in figure
II.3. The player graphics may fill the entire height of the screen or
they may be only a couple of lines high if the rest of the display data is
all O's. Each byte in the mis$ile display also r epresents eight pixels,
two pixels for each missile. Each pixel may be 1, 2, or 4 color clocks,
and is determined by the SIZE registers.

Plavfield: Playfield is always generated by DMA. There are four
playfields, each identified by its own color-lum register and collision
detection. Playfield is generated by two different DMA techniques:
memory map and character. Both methods provide lists of instructions in
memory, independent of the player-missile generation.

rr.s

Player-Missile Base Address (PMBASE) = MSB of address.
Resolution is controlled by bit 4 of DMACTL.

ADDRESS
Two-line
resolution

(hex)

+180

+200

+280

+300

+380

+400

OFFSET
One-line

resolution
(hex)

+300

PMBASE*100(hex)

M

+400 ----~~ J-.....;;;lL..-....&...--1~ /

PO

+400

P1

+600

P2

+700

P3

+800

Player-Missile
Vertical screen
map in memory

Missile
Number

TV SCREEN

/

/
/

/

/1 -POl
I I

I I I
I I I I
... II
M2 •

I I MO -P2

• W'

I I
I I • 1 P1

~
M1

P31 M3 - - - :--r-1 .;:;..;.....--=~------'

I
I
I
1 Horizontal position
~~for each object is set

independently by 8
horizontal position
registers.

Each section of memory maps directly
onto total height of TV screen.
Object vertical position is determined
only by its location in its section
of memory. One byte of memory equals
1 or 2 television lines vertically.

Figure II. 2 P L A Y E R - M I S S I L E D M A

II.6

Unlike players and missiles, there are no horizontal position registers
for playfield. Each player can only have one byte of display per line.
Playfield, on the other hand, may require up to 48 bytes per line because
it can fill the entire width of the screen.

There are three different playfield widths: narrow (128 color
clocks), standard (160 color clocks), and wide (192 color clocks).
The width is selected by storing into DMACTL. The advantage of a narrower
width is that less RAM is required and fewer machine cycles are stolen for
DMA. The OS graphics modes use the standard screen width.

Display List: The display list is a sequence of display instructions
stored in memory. These instructions are either one (1) byte or three (3)
bytes long. The display list can be considered a display program, and the
Display List Counter that fetches these instructions can be thought of as
a display program counter. (10 bit counter plus 6 bit base register.)

The display list counter can be initialized by writing to DLISTH and
DLISTL. (or OS shadow registers SDLSTH and SDLSTL). Once initialized
this counter value is used to address the display list, fetch the instruc
tion, display one (1) to sixteen (16) lines of data on the TV screen,
increment the Display List Counter, fetch the next display instruction,
and so on automatically without microprocessor control (see DLISTL and
DLISTH). DLISTL and DLISTH should be altered only during vertical blank
or when DMA is disabled (see DMACTL).

Each instruction defines the type (alpha character or memory map) and
the resolution (size of bits on screen) and the location of data in memory
to be displayed for a group (1 to 16) of lines. Each group of lines is
called a display block.

THE DISPLAY LIST CANNOT CROSS A 1K BYTE MEMORY BOUNDARY UNLESS
A JUMP INSTRUCTION IS USED.

\

Counter
DISPLAY LIST COUNTER

II.7

/

Display Instruction Format: Each instruction consist~ of ei t ner an
opcode only, or of an opcode followed by two (2) bytes of operand.

lopcodel ------Single Byte Display Instruction

lopcodel

!operandi ----Triple Byte Display Instruction

I operandi

The opcode is always fetched first and placed in the Instruction
Register. This opcode defines the type of instruction (1 or 3 bytes)
and will cause two more bytes to be fetched if needed. If fetched,
these next two (2) bytes will be placed in the Memory Scan Counter,
or in the Display List Counter (if the instruction is a Jump).

Display Instruction Register (IR): This register is loaded with the
opcode of the current display list instruction. It cannot be accessed
directly by the programmer. There are three basic types of display list
instructions: blank, jump, and display.

Blank
(1-byte) ID7ID6ID5ID41 Ol Ol Ol OJ

This instruction is used to create 1 to 8 blank lines on the
display (blackground color).

Jump
(3-bytes)

D7
D6 - D4
D3 -DO

1 = display list instruction interrupt
0-7 = 1-8 blank lines
0 = blank

ID7ID61 XI XI Ol Ol Ol 1!

This instruction is used to reload the Display List Counter.
The next two bytes specify the address to be loaded (LSB first).

D7 1 display list instruction interrupt
D6 0 jump (creates one blank line on display)

1 jump and wait until end of next vertical blank
D5-D4 X don't care
D3-DO 1 jump

Display
(1 or 3 bytes) ID7ID6ID5ID4ID3ID2ID1!DOI

This instruction specifies the type of display for the next
display block.

D7 1
D6 0

1

DS 1
D4 1
D3-DO 2-F

display list instruction interrupt
1 byte instruction
3 byte instruction (reload Memory Scan Counter
using address in next two bytes, LSB first).
vertical scroll enable
horizontal scroll enable
display mode (memory or character map -
see following pages).

II.8

HSCROL I lXXI lXXI lXXI lXXI lXXI lXXI lXXI lXXI Horizontal Scrolling
VSCROL I I IXXIXXI I IXXIXXI I IXXIXXI I IXXIXXI Vertical Scrolling
LD MEM SCAN I I I I IXXIXXIXXIXXI I I I IXXIXXIXXIXXI Load memory scan (3 byte)
INST INTERRUPT I I I I I I I I IXX!XX!XX!XX!XXIXXIXXIXXI Display instruction interrupt

I I I I I I I I I
BLK 1 00 I I lBO

" 2 10 I I 190
" 3-7 I I I
" B 70 I I IFO

JMP 01 I I B1
J VB 41 I I c 1
CHR (40,2,B) 02 12122 32 42152 62 72 B2 92IA2IB2 C2 D2IE2IF2

" (40,2,10) 03 13123 33 43153 63 73 B3 93IA3IB3 C3 D3IE3IF3
" (40,4,B) 04 14124 34 44154 64 74 B4 94IA4IB4 C4 D4IE4IF4
" (40,4,16) OS 15125 35 45155 65 75 BS 9SIASIBS cs DSIESIFS
" (20,5,B) 06 16126 36 46156 66 76 B6 96IA6IB6 C6 D6IE6IF6
" (20,5,16) 07 17127 37 47157 67177 B7 97IA7IB7 C7 D7IE7IF7

MAP (40,4,B) OB 1BI2B 3B 4BISB 6BI7B BB 9BIABIBB CB DBIEBIFB
" (B0,2,4) 09 19129 39 49159 69179 B9 99IA9IB9 C9 D9IE9IF9
" (B0,4,4) OA 1AI2AI3A 4AISA 6AI-VA BA 9AIAAIBA CA DAIEAIFA
" (160,2,2) OB 1BI2BI3B 4BISB 6BI7B BB 9BIABIBB CB DBIEBIFB
" (160,2,1) oc 1CI2CI3C 4CISC 6CI7C BC 9CIACIBC cc DCIECIFC
It (160,4,2) OD 1DI2DI3D 4DISD 6DI7D BD 9DIADIBD CD DDIEDIFD
It (160,4,1) OE 1EI2EI3E 4EI5E 6EI7E BE 9EIAEIBE CE DEIEEIFE
It (320,2,1) OFI1FI2FI3F 4FI5F 6FI7F BF 9FIAFIBF CF DFIEFIFFI

I I I
I I _._I __
I
I

Number of TV lines per cell
Number of Colors (Background + Playfield types)
Number of Horizontal cells (standard width screen)

Figure II.3 DISPLAY INSTRUCTION OPCODES

II.9

Blank 1 line
Blank 2 lines
Blank 3 thru 7 lines
Blank B lines
Jump (3 byte instruction)
Jump & wait for Vert. Blank

(also 3 byte)

Character Mode
Instructions

Memory Map Mode
Instructions

Bit 7 of a display list instruction can be set to create a display
list interrupt if bit 7 of NMIEN is set. The display list interrupt code
can change the colors or graphics during the middle of the TV disnlay.
The type of interrupt is determined by checking NMTST. NMIRES clears
NMIST. The current OS will vector through VDSLST (Hex 200 and 201) to
the user's display list interrupt routine. See the JS manual for program
ming details.

Bits 5 and 4 of a display type of display list instruc\ .on~ ~re used
to enable vertical and horizontal scrolling. The amou11t of scrolling
depends on the values in the VSCROL and HSCROL registers (to be described
later).

Memory Scan Counter: This counter is not directly accessible by the
programmer. It is loaded with the value in the last 2 bytes of a 3 byte
(non-Jump) instruction.

This counter points to the location (address) in memory of data to be
directly displayed (memory map display) or to the location of character
name strings to be indirectly displayed (character display).

A single byte instruction does not reload this counter. This implies
a continuation in memory of data to be displayed from that displayed by
the previous instruction. Since this counter really consists of 4 bits of
register and 12 of actual counter, a continuous memory block cannot cross~

4K byte memory boundaries, unless the counter is repositioned with a 3
byte Load Memory Scan Counter instruction.

MSB third byte of 3 byte
byte instruction

7 6 5 4 3 2 1

\
0 7

Counter

LSB Second byte of 3
byte instruction

6 5 4 3 2

/
1 0

Memory Map Display Instructions: Data in memory (addressed by the
Memory Scan Counter) is displayed directly when executing a memory (bit)
map display instruction. As data is being displayed it is also stored in
a shift register so that it can be redisplayed for as many TV lines as
required by the instruction.

rr.10

Memory Scan Counter
Addresses each byte

One line worth of memory is
loaded into the shift register

Memory

Shift register data is displayed for four TV scan lines in this example.

In Instruction Register (IR) display modes 8 through F, one or two
bits of memory are used to specify what is to be displayed on each pixel
of the screen. Pixel sizes range from 1/2 clock by 1 TV line to 4 clocks
by 8 TV lines. The OS and BASIC support most of these graphics modes
(BASIC GRAPHICS command). Two modes, C and E, are not supported by the
OS. These modes have rectangular pixels, which are approximately twice as
wide as they are high.

In IR mode F, only one color (COLPF2) can be displayed. Two different
luminances are available. If a bit is a zero, then the luminance of the
corresponding pixel comes from COLPF2. If the bit is a one, them the
luminance is determined by the contents of COLPFl (abbreviated to PF1).

In IR modes 9,B, and C, two different colors can be displayed. A
zero indicates background color and a one indicates PFO color. The
difference between the various modes is in the size of the pixels.

In IR modes 8,A,D, and E, two bits are used to specify the color
of each pixel. This allows four different colors to be displayed.
However, only four pixels can be packed into each byte, instead of eight
as in the previous modes. The bit assignments are shown below.

SHIFT REGISTER 7 6[5 4 [3 2 1 0

II.ll

1 6 I 5 4 3 2 I 1 o

2 bits form
one pixel

Memory MaE DisElay Modes

I OS I !Colors IPixelsiBytesiScan !Color I I Bit I I
I and IInst.l per I per I per ILinesiClocksiBits !Values I Color I
I BASIC I Reg. Mode I Std. !Std. I per I per I per I in I Reg. I
Modes!HEX I Line I Line!Pixel!Pixel IPixeljPixel !Select!

I I I I I I I oo I BAK
3 I 8 4 I 40 I 10 I 8 I 4 I 2 I 01 PFO

I I I I I I I 10 PFl
I I I I I I I 11 PF2
I I I I I I I

4 I 9 2 I 80 I 10 I 4 I 2 I 1 I 0 BAK
I I I I I I I 1 PFO

I I I BAK
5 I A I 4 80 20 4 2 2 I PFO

I I I PF1
I I I PF2
I I I

6 I B I 2 160 20 2 1 1 I 0 BAK
I I I 1 PFO

2 160 20 1 1 1 0 BAK
1 PFO

I I BAK
7 I D 4 160 40 2 1 2 I 01 PFO

I I 10 PF1
I I 11 PF2
I I 00 BAK

- I E 4 160 40 1 1 2 I 01 PFO
I I 10 PF1

I 11 PF2
I

8 1 !z 320 40 1 !z 1 I 0 PF2
I 1 PF1
I {LUM)

11.12

Character Display Instructions: The first step in using the character
map mode is to create a character set in memory (or the built-in OS
character set at hex EOOO may be used). The character set contains eight
bytes of data for the graphics for each character. The meaning of the
data depends on the mode. The character set can contain 64 or 128 characters,
also depending on the mode. The MSB (Most Significant Byte) of the
address of the character set is stored in CHBASE (or the OS Shadow CHBAS).
Only the most significant six or seven bits of CHBAS are used (see CHBASE
description in section III). The other one or two bits and the LSB of the
address are assumed to be zero, so the character set must start at an
acceptable page boundary.

The next step is to set up the display list for the desired mode.
Then the actual display is set up. This consists of a string of character
names or codes. Each name takes one byte. The last 6 or 7 bits of the
name selects a character. For a 64 character set, the name would range
from 0 through 63 (decimal). For a 128 character set, the range would be
0 through 127 (decimal). The upper one or two bits of the name byte are
used to specify the color or other special information, depending on the
mode.

Character names (codes) are fetched by the memory scan counter, and
are placed in a shift register. On any given line of display the shift
register rotates, changing only the name portion of the character address,
as shown below.

After a full line of character data has been displayed the line
counter will increment. The next line again addresses all characters by
name for that line number.

In 20 character per line modes the seven most significant bits of
CHBASE are used. This requires that the character set to start upon a 512
byte memory boundary. The set must contain 64 charcters, 8 bytes each,
giving a total of 512 bytes for the set.

The 40 character per line modes use the six most significant bits
of CHBASE,forcing the character set to start on a 1K byte memory boundary.
The set must have 128 characters of 8 bytes each. This gives a total of
1024 bytes for the set.

Hex Graphics Chars. Number Bytes Number Bytes
Code Mode Per of per of Char. in

Line Colors Char. in set Char Set

2 0 40 2 8 128 1024

I

3 40 2 8 128 1024

4 40 4 8 128 1024

5 40 4 8 128 1024

6 1 20 5 8 64 512

7 2 20 5 8 64 512

II.13

Shift
Register

CHBASE

l I
I

r

I

Character Display

(20 Character per line mode example)

Codes (names)
Stored in
Shift Register

F

Color
Register

Select

I
not

............. v

I

X

I __ :; _ ____..

I

Address portion of
Character name

used
..,.....,

v

I
Character Data Address

Character Set
in Memory

w

y

Addresses data in
character set

displays on the

Color assigned
by color register
selected

II .14

z

'\

I

Internal
codes for
characters
in memory

F

X

z

0
1 TV
2 Scan
3 Lines
4
5
6
7

/

There are six charcter map modes, IR modes 2 through 7. Modes 2,6
and 7 are supported by the OS and BASIC (GRAPHICS 0,1 and 2).

In IR modes 6 and 7, the upper two bits of each character name select
one of four playfield colors. For each data bit that contains a one, the
selected playfield color is displayed. For each zero data bit, the
background color is displayed. The four character colors plus the background
color gives a total of five different colors. the mode 6 characters are
eight lines high and the mode 7 characters are sixteen lines high (each
data byte is displayed for two lines).

In IR modes 4 and 5, each character is only four pixels wide instead
of eight (as in the other modes). Two bits per pixel of data are used to
select one of three playfield colors, or background. Seven~ bits are
used to select the character. If the most significant name bit is a zero
then data of 10 (binary) selects PF1. If the name bit 7 is one, then data
bits of 10 select PF2. This makes it possible to display two characters
with different colors, using the same data but different name bytes.

In IR modes 2 and 3, each pixel is half of a color clock in width.
This makes it possible to have forty eight-pixel-wide characters in a
standard width line. These modes are similar to memory mode F in that two
luminances can be displayed, but only one color is available at a time.
In IR mode 3, each character is 10 lines high. This makes it possible to
define lower case characters with descenders. The last fourth of the
character set (name bits 5 and 6 equal to one) is lowered. The hardware
takes the first two data bytes and moves them to the bottom of the character,
displaying two blank lines at the top of the character (see next page).

In IR modes 2 and 3, bit 7 of the character name is used for inverse
video or blanking. This is controlled by CHACTL (Character Control). If
bit 2 of CHACTL is a one then all of the characters will be displayed
upside down, regardless of mode. If CHACTL bit 1 is set, then each
character which has bit 7 of its name set will be displayed in inverse
video (the luminances will be reversed). If CHACTL bit 0 is set, then
each character which has bit 7 set will be blanked (only background wil be
displayed) . Characters can be blinked on and off by setting name bit 7 to
1 and toggling CHACTL bit 0. Inverse video and blank apply only to IR
modes 2 and 3. If both inverse video and blank are set then the character
will appear as an inverse video blank character (solid square).

Hardware Collision Detection: 60 bits of collision register are
provided to detect and store overlap (hits) between players, missiles and
playfield. These collisions can be read by the microprocessor from
addresses DOOO through DOOF. There are no bits for missile to missile
collisions.

16 bits for Missile to Playfield
16 bits for Player to Playfield
16 bits for Missile to Player
12 bits for Player to Player (PO to PO always reads as zero, etc.)

The 1/2 clock memory map mode (IR code 1111) and the 1/2 clock Character
mode (IR codes 0011 and 0010) are both playfield type 2 collisions and will
be stored irr bit 2 of the playfield collision registers.

II.15

Data

Actual
Display

Upper Case

IR Mode 3-Upper and Lower Case

Lower Case

11.16

Character MaE DisElay Modes

I OS I IChars.IScan !Color !Data !Color I Bit I
I and IInst. Colors per ILinesiClocksiBits !Select !Values Color I
IBASICIReg. per Std. I per I per I per !Bits Inl in Reg. I
Modes HEX Mode Line IChar.IPixel IPixell Name I Data Select!

I I I I I I
0 2 1~ 40 I 8 I ~ I 1 I I 0 PF2 I

I I I I 1 PF1 I
I I I I ~LUM) I
I I I I I

3 1~ 40 I 10 ~ I 1 I I 0 PF2 I
I I I I 1 PF1 I
I I I I I ~LUM) I
I I I I 00 I BAK I

4 5 40 I 8 1 I 2 !Bit 7 I 01 I PFO I
I I = o I 10 I PF1 I
I I I 11 I PF2 I
I I I I I
I !Bit 7 I 11 I PF3 I
I I = 1 I I I
I I I 00 I BAK I

5 5 40 16 1 I 2 !Bit 7 I 01 I PFO I
I = o I 10 I PFl I
I I 11 I PF2 I
I I I I
Bit 7 I 11 I PF3
= 1 I I

I 0 I BAK
1 6 5 20 8 1 1 00 I 1 I PFO

01 I 1 I PF1
10 I 1 I PF2
11 I 1 I PF3

I 0 I BAK
2 7 5 20 16 1 1 00 I 1 I PFO

01 I 1 I PF1
10 I 1 I PF2
11 I 1 I PF3

II.17

Vert i cal and Horizontal Fine Scrolling: Playfield objects are difficult
to move smoothly . Memory map playfield can be moved by rewriting sections
of memory. However, this is extremely time-consuming if large sec ~ ions

of the screen must be moved smoothly. Character playfield objects can be
moved easily in a jerky fashion by changing the memory &can counter.
However, this results in a large position jump from one character position
to another, not a smooth motion. For this reason hardware registers
(VSCROL and HSCROL) and counters are provided to allow smooth hori zontal
or vertical motion, up to one character width horizontally aud u~ to one
character height vertically. After this much smooth motion has been
done by increasing the value in these registers, memory is rewritten or
the memory scan counter is modified and smooth motion is resumed for
another character distance.

Vertical Scrolling: A zone of playfield on the screen can be scrolled
upward by using VSCROL and bit 5 of the display list instruction. The
display blocks at the upper and lower boundaries of the zone must have a
variable vertical size. In particular, the first display block within that
zone must be shortened from the top, and the last display block must be
shortened from the bottom (i.e. not all of the top and bottom blocks will
be displayed).

The vertical dimension of each display block is controlled by a 4 bit
counter within the ANTIC, called the 'Delta Counter' (DCTR). Without
vertical scrolling, it starts at 0 on the first line, and counts up to a
standard value, determined by the current display instruction. (Ex:
for upper and lower case text display, the end value is 9. For 5 color
character displays, it is 7 or 15.)

If bit 5 of the instruction remains unchanged between consecutive
display blocks, then the second block is displayed in the normal fashion.
If bit 5 of the instruction goes from 1 to 0 between two consecutive
display blocks, the second block will start with Delta = 0, as usual, but
will count up until delta=VSCROL, instead of the standard value. This
shortens that display block from the bottom.

To define a vertically scrolled zone, the most direct method is to
set bit 5 to 1 in the first display instruction for that zone, and in all
consecutive blocks but the last one. If the VSCROL register is not
rewrittren on the fly, this results in a total scrolled zone that has a
constant number of lines (provided that the VSCROL value does not exceed
the standard individual block size). If N is the standard block size, the
top block will be N-VSCROL lines (N > VSCROL), and the last block will be
VSCROL + 1 lines: (N-VSCROL) + (VSCROL + 1) = N + 1. Shown on the
following page is an example of a scrolled zone, top block, for 8 VSCROL
values for N = 8.

Horizontal scrolling is described under HSCROL in section III.

II.18

VS· RC:., ""' 6 \.'S·:: R~-=·L=I

bit 5 =~

• I 0 I 5 "' • I I b 7 C>

lo 1 I T~ • I

T~
C>

"I "'
7 D I

IJ~ = I 7 D I

IJ~ : I c. 0 I

IJ~ = I I, 7 0 I

IJ~
r-

IJ~
..-< = I 1 0 I lo II
..-<

= I I {p 7 + 0 co
>< = I I " 7 0 N

= I
"'

7 C> I IJ~ IJ~ IJ~ ~ I (o 7 0 I

p~ =I b 7 0

p~ = I c.. 7
= I '" 7 0

=I

=f lo

Simple Display List Example: BASIC starts out in OS graphics mode 0
which displays 40 characters across by 24 rows. This is IR mode 2 witn a
standard screen width. The OS sets up the display list near the top of
RAM with room for the character names at the top of RAM. On a 32 K-byte
machine, the display list would start at hex 7C20. The next three bytes
are hex 70's to create 24 blank lines. The next byte is a hex 42. The
4 tells the hardware to reload the memory scan counter with the following
address (7C40). This is the address of the data to be displayed. The 2
tells the hardware to display one line of IR mode 2 characters. The
next 23 bytes specify 23 more lines of mode 2 characters. Hex 41 is the
code for jumping and waiting until the end of the next vertical blank.
The address to jump to is 7C20, the start of the display list. TI1e next
960 bytes are the list of characters to be displayed, 40 bytes per line.
The OS must set up the display list pointer (DLISTH and DLISTL) to the
starting address of the display list (7C20). It also sets CHBASE to the
MSB of the address of the character set (EO).

This is a simple example because only one mode is used and the memory
scan counter is only loaded at one point. It is possible to have different
modes on different lines, change character sets and colors, etc. , as shown
in the example in Section IV.

11.19

ft.
7

OS Mode 0 Display List (40 chars x 24 l ines)

Address (hex) Data (hex)

7C20 70) 70 24 blank lines
70
42) reload memory scan counter with 7C40,
40 IR mode 2
7C

2
2
2

23 more IR mode 2 instructions

2
2
2

41) ~~ back to 7C20 and
20 wait for end of vertical blank.
7C

7C40) 960 bytes of display data
(character names)

Cycle Counting: As explained previously, the ATARI 800 6502 micropro
cessor runs at a rate of 114 machine cycles per TV line (1.79 MHZ). There
are 262 lines per TV frame and 60 frames per second on the NTSC (US) system.
(The PAL (European) system is different. See the section on NTSC vs. PAL.)

Each machine cycle is equivalent in length to 2 color clocks. There
are 228 color clocks on a TV line. The highest resolution graphics modes
have a pixel size of 1/2 color clock by 1 TV line. Horizontal blank takes
40 machine cycles. This is when the beam returns to the left edge of the
screen in preparation for displaying the next TV line. A wait for Sync
(WSYNC) instruction stops the 6502. The processor is restarted exactly 7
machine cycles before the beginning of the next TV line. The program can
thus change graphics or colors during horizontal blank in preparation for
the next line.

The ANTIC chip steals cycles from the 6502 in order to do memory
refresh and fetch graphics data when needed. The general rule to remember
is that each byte fetched from memory requires one machine cycle. If a
display list memory map instruction extends over several lines then the data
is only fetched on the first line. Memory refresh takes 9 cycles out of
every line, unless pre-empted by a high-resolution graphics mode. Memory
refresh continues during vertical blank.

Missile DMA takes one cycle per line in the one-line resolution mode
and one cycle every other line in the two line resolution mode. Missile
DMA can be enabled without doing player DMA. However, if player DMA is
enabled then missile DMA will also be done (see DMACTL, GRACTL bits).
Player DMA requires 4 cycles every one or two lines, depending on the
resolution used.

11.20

Each fetch of a display list byte takes one cycle, so three cycles
are required for a three byte instruction.

Player/missile and display list instruction fetch DMA take place
during horizontal blank, if they are required for the next line.

I n memory map modes, the graphics data is fetched as needed throughout
the first l i ne of the display list instruction, then saved by ANTIC for
use in succeeding lines. In character modes, the character codes are
fetched during the first line of each row of characters, along with the
graphics data needed for that line. On the next lines, only the graphics
data is fetched, since ANTIC remembers the character codes.

In the 40 x 24 character mode, with a standard screen width, most of
the cycles during the top line of each row of characters are requried to
fetch the character codes and data, so there is only time for one memory
refresh cycle instead of the usual nine. Less DMA is required with a narrow
screen width so two memory refresh cycles would occur in this case.

The memory refresh is done fast enough to make up for the lost cycles
in the high resolution modes. Once memory refresh starts on a line, it
occurs every four cycles unless pre-empted by DMA.

All interrupts reach the 6502 near the end of horizontal blank.
With standard or narrow screen widths, refresh DMA starts after the end of
horizontal blank.

The time at which ANTIC does cycle stealing is deterministic, but
depends on the graphics mode, screen width and whether or not horizontal
scrolling is enabled. Horizontal scrolling requires extra graphics data:
see HSCROL.

ANTIC does horizontal scrolling of an even number of color clocks by
delaying the time at which it DMA's the data. To do an odd number of color
clocks (which involves half of a machine cycle), ANTIC has a one color clock
i nternal delay.

Theoretically, it is possible to write a program which changes graphics
or colors "on the fly", i.e. during the middle of a TV line. However,
with all the DMA going on, the cycle counting gets to be quite complicated,
and is beyond the scope of this manual.

There are a number of delays associated with the display of graphics.
These occur in the ANTIC and the CTIA. The ANTIC sends data to the CITA
which adds in the color information. Thus the timing for changing colors on
the fly is different from that for changing graphics on the fly.

II. 21

When

Horizontal Blank DMA Timing

DMA is enabled, cycles are stolen at the times shown below.
End of

rPrevious Horizontal Blank .. I Line
20 machine cycles (40 color clocks)

5 411111412 8

~
WSYNC

1-9 refresh cycles.
char. and graphics
data DMA (depends on
graphic mode)

Interrupt
~-------Address DMA (3-byte display list

instruction)
~------------Player

~-----------------Display list instruction fetch DMA
~---------------------Missile DMA

Cycle Counting Example: This example uses the 40 character by 24 line
display list given on page II.24. This display list is 32 bytes long so
display list DMA takes 32 machine cycles. It takes 960 cycles to DMA the
characters and 8*960 to DMA the character data. The refresh DMA takes 9
cycles for each of 262 lines, except for the 24 lines where the characters
are read, where only 1 refresh cycle occurs.

DMA description
display list
characters
character data
refresh
total

Machine

40x24
960x8

262x9-24x8

cycles
32

= 960
=7680
=2166
10838

Thus the total DMA per frame is 10838 machine cycles. One frame
is 262 lines with 114 machine cycles per line for a total of 29868 machine
cycles per frame. Thus 36% of each frame is required for DMA in OS graphics
mode 0.

NTSC vs. PAL Systems: There are two versions of the ATARI 800: the NTSC
(United States T.V. standard) and PAL (one of the European T.V. standards).
The PAL system has been designed so that most programs will run without
being modified. However, some differences may be noticeable. There is a
hardware register (PAL) which a program can read to determine which type of
system it is running on and adjust accordingly.

II.22

The PAL T.V. has a slower frame rate (50 Hz. instead of 60Hz.) so
games will be slower unless an adjustment is made. PAL has more T.V.
lines per frame (312 instead of 262). The Atari 800 hardware compensates
for this by adding extra lines at the beginning of vertical blank. Display
lists do not have to be altered. However, their actual vertical height will
be shorter. PAL ATARI 800 colors are similar to NTSC because of a hardware
modification.

B. POKEY

Audio: There are 4 semi-independent audio channels, each with its own
frequency, noise, and volume control. Each has an 8 bit "divide by N"
frequency divider, controlled by an 8 bit register (AUDFX). (See audio-serial
port block diagram.) Each channel also has an 8 bit control register (AUDCX)
which selects the noise (poly counter) content, and the volume.

Frequency Dividers: All 4 frequency dividers can be clocked simultane
ously from 64KHZ or 15KHZ. (AUDCTL bit 0). Frequency dividers 1 and 3
can alternately be clocked from 1.79 MHZ (AUDCTL bits 6 and 5). Dividers 2
and 4 can alternately be clocked with the output of dividers 1 and 3 (AUDCTL
bits 4 and 3). This allows the following options: 4 channels of 8 bits
resolution, 2 channels of 16 bit resolution, or 1 channel of 16 bit and 2
channels of 8 bit.

Poly Noise Counters: There are 3 polynomial counters (17 bit, 5 bit
and 4 bit) used to generate random noise. The 17 bit poly counter can be
reduced to 9 bits (AUDCTL bit 7). These counters are all clocked by 1.79
MHZ. Their outputs, however, can be sampled independently by the four
audio channels at a rate determined by each channel's frequency divider.
Thus each channel appears to contain separate poly counters (3 types)
clocked at its own frequency. This poly counter noise sampling is controlled
by bits 5,6 and 7 of each AUDCX register. Because the poly counters are
sampled by the "divide by N" frequency divider, the output obviously cannot
change faster than the sampling rate. In these modes (poly noise outputted)
the dividers are therefore acting as "'low pass" filter clocks, allowing only
the low frequency noise to pass.

The output of the noise control circuit described above consists of
pure tones (square wave type), or polynomial counter noise at a maximum
frequency set by the "divide by N" counter (low pass clock). This output
can be routed through a high pass filter if desired (AUDCTL bits 1 and
2).

II. 23

Audio Noise Filters:

VOL

~------------------~ 1c;;wnr:~~.·~~·~
Low Frequency

Noise

cut off set
counter.

Any channel noise output (without high pass filter)

VOL

Channel
- by N

Frequency

~--- Frequency

Channel 1 output (with high pass filter)

Channel 2 output (with high pass filter)

Clock

D

II. 24

D4 Fifth Player Enable.

D3, D2, D1,
& DO

Higher
Priority

This bit causes all missiles to assume the color of Playfield
Type 3. (COLPF3). This allows missiles to be positioned
together with a common color for use as a fifth player.

Priority Select (Mutually Exclusive).
These bits select one of 4 types of priority. Objects with
higher priority will appear to move in front of objects
with lower priority.

D3=1 D2=1 D1=1 D0=1
I I I

[PFO
ICPFO

I PO] I PO] PF1 I PF1 I P1 I P1
PO I PF2 I PFO

I P2
Pl J I PF3 + P5 I PFl t P2 I PO] I PF2
P3 I P1 I PF3 + 5 I PF1
PF2 I P2 I P2 J I PF2

!;3 + P5 I P3 I P3 I PF3 + 5
BAK 1 BAK I BAK J BAK

NOTE: The use of Priority bits in a "non-exclusive" mode (more than 1
bit true) will result in objects (whose priorities are in conflict)
turning BLACK in the overlap region.

EXAMPLE: PRIOR code = 1010 This will black PO or P1 if they are over
PFO or PF1. It will also black P2 or P3 if they are over PF2 or
PF3. In the one-color 40 character modes, the luminance of a
pixel in a character is determined by COLPF1, regardless of the
priority. If a higher priority player or missile overlaps the
character then the color is determined by the player's color.

OS SHADOW: GPRIOR (26F)

COLPFO- COLPF3 (Playfield Color)(D016, D017, D018, D019): These
addresses write data to the Playfield Color-Lum Registers.

D7 D6 D5 D4 D3 D2 D1 DO
(see COLBK for bit assignment)

OS SHADOWS: COLORO - 3 (2C4-2C7)

III.8

COLBK (Background Color)(DOlA): This address writes data to the
Background Color-Lum Register.

Color Luminance
I I I I I Not I

D7 I D6 I D5 1 D4 D3 I D2 I Dl Used

X X X X 0 0 0 Zero Luminance (black)
0 0 1

ETC.
1 1 1 Max. Luminance(white)

0 0 0 0 Grey
0 0 0 1 Gold
0 0 1 0 Orange
0 0 1 1 Red-Orange
0 1 0 0 Pink
0 1 0 1 Purple
0 1 1 0 Purple-Blue
0 1 1 1 Blue
1 0 0 0 Blue
1 0 0 1 Light-Blue
1 0 1 0 Turquoise
1 0 1 1 Green-Blue
1 1 0 0 Green
1 1 0 1 Yellow-Green
1 1 1 0 Orange-Green
1 1 1 1 Light-Orange

OS SHADOW: COLOR4 (2C8)

E. PLAYERS AND MISSILES

DMACTL, GRACTL, PMBASE and PRIOR also affect players and missiles.

COLPMO- COLPM3 (Player-Missile Color)(D012, D013, D014, D015): These
addresses write to the Player-Missile Color-Lum Registers. Missiles have
the same color-lum as their player unless missiles are used as a 5th player
(see bit 4 of PRIOR). A 5th player missile gets its color from COLPF3.

D7 D6 D5 D4 D3 D2 Dl DO
(see COLBK for bit assignments)

OS SHADOWS: PCOLRO - 3 (2C0-2C3)

GRAFPO - GRAFP3 (Player Graphics Registers): (PO DOOD, Pl DOOE, P2 DOOF,
P3 DOlO): These addresses write data directly into the Player Graphics
Registers, independent of DMA. If DMA is enabled then the graphics registers
will be loaded automatically from the memory area specified by PMBASE(see
page II. 3).

I D7 : D6 D5 D4 D3 D2 Dl DO
Left Right

Player on TV Screen

III.9

GRAFM (Missile Graphics Registers)(D011): This address writes data
directly into the Missile Graphics Register, independent of DMA.

I D7 : D6 I D5 : D4 I D3 : D2 I D1 : DO
L R
~

M3 M2 M1 MO

SIZEPO- SIZEP3 (Player Size)(PO D008, P1 D009, P2 DOOA, P3 DOOB):
These addresses write data into the Player Size Control Registers.

Not
Used D1

0

0

1

1

DO

0

1

0

1

Horizontal Size
Register (Player)

Normal Size
(8 color clocks wide)

Twice Normal Size
(16 color clocks wide)

Normal Size

4 Times Normal Size
(32 color clocks wide)

With normal size objects, each bit in the graphics register corresponds
to one color clock. For larger objects, each bit is extended over mor~than
one color clock.

SIZEM (Missile Size)(DOOC): This address writes data into the Missile
Size Control Register •

.... I..:::D..:..7.....~.-: ..:::D~6~.-..:::D=-5 :I....,;;;,D-:..:4 -~....~D 3 : D 2__,__,__,__, ~
M3 M2 M1

I
D1 I DO
~

MO

0 0

0 1

1 0

1 1

Horizontal Size
Register (Missile)

Normal Size
(2 color clocks wide)

Twice Normal Size
(4 color clocks wide)

Normal Size

4 Times Normal Size
(8 color clocks wide)

HPOSPO- HPOSP3 (Player Horizontal Position)(PO DOOO, P1 D001, P2 D002,
P3 D003): These addresses write data into the Player Horizontal Position
Register (see display diagram in section IV). The horizontal positon value
determines the color clock location of the left edge of the object. Hex 30
is the left edge of a standard width screen. Hex DO is the right edge of a
standard screen.

D7 D6 D5 D4 D3 D2 D1 DO

III.10

HPOSMO- HPOSM3 (Missile Horizontal Position)(MO D004, M1 D005,
M2 D006, M3 D007): These addresses write data into the Missile Horizontal
Position Registers (see HPOSPO description).

D7 D6 D5 D4 D3 D2 D1 DO I
VDELAY (Vertical Delay)(D01C): This address writes data into the

Vertical Delay Register.

D7 D6 D5 D4 D3 D2 D1 DO

P3 P2 P1 PO M3 M2 M1 MO

VDELAY is used to give one-line resolution in the vertical po
sitioning of an object when the 2-line resolution display is enabled.
Setting a bit in VDELAY to 1 moves the corresponding object down by one
TV line.

If player-missile DMA is enabled then changing the vertical location
of an object by more than one line is accomplished by moving bits around
in the memory map. If DMA is disabled then the vertical location can be
set up by assembly language code which stores data into the graphics
registers at the desired line.

MOPF, M1PF, M2PF, M3PF (Missile to Playfield Collisions)(DOOO, D001,
D002, D003): These addresses read Missile to Playfield Collisions.
A 1 bit means that a collision has been detected since the last HITCLR.

Not Used
(zero forced) D3

3

D2

2

D1 DO

1 0 Playfield Type

POPF, P1PF, P2PF, P3PF (Player to Playfield Collisions)(D004,
DOOS, D006, D007): These addresses read Player to Playfield Collisions.

Not Used
(zero forced) D3

3

D2

2

D1 DO

1 0 Playfield Type

MOPL, M1PL, M2PL, M3PL (Missile to Player Collision)(D008, D009,
DOOA, DOOB): These addresses read Missile to Player Collisions.

Not Used
(zero forced) D3

3

D2

2

D1 DO

1 0 Player Number

POPL, P1PL, P'~L, P3PL (Player to Player Collisions)(DOOC, DOOD, DOOE,
DOOF): These addresses read Player to Player Collisions

Not Used
(zero forced) D3

3

D2

2

D1 DO

1 0 Player Number

(Player 0 against Player 0 is always a zero). Etc.

III.ll

HITCLR (Collision "HIT" Clear) DOlE

This write address clears all collision bits described
above.

F. AUDIO

Not
Used

AUDCTL (Audio Control)(D208): This address writes data into the Audio
Mode Control Register. (Also see SKCTL two-tone bit 3 and notes).

I D7 : D6 : D5 D4 D3 D2 Dl DJ
D7 Change 17 bit poly into a 9 bit below poly.
D6 Clock Channel 1 with 1.?9 MHZ, instead of 64KHZ.
D5 Clock Channel 3 with 1.79 MHZ, instead of 64KHZ.
D4 Clock Channel 2 with Channel 1, instead of 64KHZ (16 BIT).
D3 Clock Channel 4 with Channel 3, instead of 64KHZ (16 BIT).
D2 Insert Hi Pass Filter in Cha~nel 1, clocked by Channel 3.

(See section II.)
Dl Insert Hi Pass Filter in Channal 2, clocked by Channel 4.
DO Change Normal 64 KHZ frequency, into 15 KHZ.

Exact Frequencies: The frequencies given above are approximate. The
Exact Frequency (fin) that clocks the divide by N counters is given below
(NTSC only, PAL different).

FIN FIN
Exact)

1.79 MHZ 1.78979 MHZ Use modified formula for fout

64 KHZ 63.9210 KHZ
Use normal formula for fout

15 KHZ 15.6999 KHZ

The Normal Formula for output frequency is:

Fout Fin/2N

Where N =The binary number in the frequency register (AUDF), plus 1 (N=AUDF+1).
The MODIFIED FORMULA should be used when Fin= 1.79 MHZ and a more exact result
is desired:

Where: M

M

Fout Fin
2(AUDF + M)

4 if 8 bit counter (AUDCTL bit 3 or 4 = 0)
7 if 16 bit counter (AUDCTL bit 3 or 4 = 1)

III .12

AUDF1, AUDF2, AUDF3, AUDF4 (Audio Frequency) (D200, D202, D204, D206)
These addresses write data into each of the four Audio Frequency Control
Registers. Each register controls a divide by "N" counter.

I I I I I
D7 I D6 I D5 I D4 I D3 I

0 0 0 0 0

0 0 0 0 0

ETC.

1 1 1 1 1

I
D2 J D1

0 0

0 0

1 1

I
l DO

0

1

1

"N"

1

2

256

Note: "N" is one greater
than the binary number
in Audio Frequency
Register AUDF(X).

AUDC1, AUDC2, AUDC3, AUDC4 (Audio Channel Control)(D201, D203,
D205, D207): These addresses write data into each of the four Audio Control
Registers. Each Register controls the noise content and volume of the
corresponding Audio Channel.

Noise Content or Distortion Volume
I I I I I I Divisor "N" set

HEX D7 I D6 I D5 I D4 D3 I D2 I D1 I DO by audio frequency
register.

0 0 0 0 0 - 17 BIT poly- 5 BIT
poly - N

2 0 0 1 0 - 5 BIT poly - N - 2

4 0 1 0 0 - 4 BIT poly - 5 BIT
poly - N

6 0 1 1 0 - 5 BIT poly - N - 2

8 1 0 0 0 - 17 BIT poly - N

A 1 X 1 0 - Pure Tone - N - 2

c 1 1 0 0 - 4 BIT poly - N

1 X X X 1 - Force Output
(Volume only)

0 0 0 0 0 - Lowest Volume (Off)

8 1 0 0 0 - Half Volume

F 1 1 1 1 - Highest Volume

III .13

PITCH VALUES FOR THE MUSICAL NOTES-AUDCTL =0, AUDC = hex AX

AUDF
Hex Dec

HIGH c lD 29
NOTES B lF 31

All or Bb 21 33
A 23 35
Gil or Ab 25 37
G 28 40
Fll or Gb 2A 42
F 2D 45
E 2F 47
D/1 or Eb 32 50
D 35 53
ell or Db 39 57
c 3C 60
B 40 64
All or Bb 44 68
A 48 72
Gil or Ab 4C 76
G 51 81
Fll or Gb 55 85
F 5B 91
E 60 96
Dll or Eb 66 102
D 6C ~108

ell or Db 72 114
MIDDLE C c 79 121

B 80 128
All or Bb 88 136
A 90 144
Gil or Ab 99 153
G A2 162
Fll or Gb AD 173
F B6 182
E Cl 193
Dll or Eb cc 204
D D9 217

LOW ell or Db E6 230
NOTES c F3 243

STIMER ~Start Timer)~D209): This write address resets all audio
frequency dividers to their "AUDF" value. These dividers generate timer
interrupts when they count down to zero (if enabled by IRQEN). (also see
IRQST)

not used

RANDOM (Random Number Generator)(D20A): This address reads the high
order 8 bits of a 17 bit polynomial counter (9 bit, if bit 7 of AUDCTL=l).

D7 D6 D5 D4 D3 D2 Dl I DO I
III.l4

G. KEYBOARD AND SPEAKER

CONSOL (Console Switch Port)(D01F):
from the console switches and indicators.
code.)

This address reads or writes data
(Set to 8 by OS Vertical Blank

Not Used
(zero forced) D3 D2 D1 DO

Hex 08 should be written to this address before reading the switches.

Ones written will pull down on the switch line.

CONSOL Bit Assignment:

DO
D1
D2
D3

Game Select - 0 means switch pressed.
Game Start)

Option Select
Loudspeaker - should be held at 1

except when writing 0
momentarily. OS writes a
1 during vertical blank.

KBCODE (Keyboard Code)(D209): This address reads the Keyboard Code,
and is usually read in response to a Keyboard Interrupt (IRQ and bits 6 or 7
of IRQST). See IRQEN for information on enabling keyboard interrupts. See
SKCTL bits 1 and 0 for key scan and debounce enable.

D7 D6 DS D4 D3

D7 Control Key
D6 Shift Key

D2 D1 DO

Read by OS into shadow CH when key is hit. The OS has a get character
function which converts the keycode to ATASCII (Atari ASCII).

III.15

KEYCODE TO ATASCII CONVERSION

KEY KEY KEY KEY
CODE CAP L.C. u.c. CTRL CODE CAP L.C. u.c. CTRL

00 L 6C 4C oc 20 ' 2C SB 00
01 J 6A 4A OA 21 SPACE 20 20 20
02 . 3B 3A 7B 22 . 2E 5D 60 ' 03 23 N 6E 4E OE
04 24
05 K 6B 4B OB 25 M 6D 4D OD
06 + 2B sc lE 26 I 2F 3F
07 * 2A 5E lF 27 * * *
08 0 6F 4F OF 28 R 72 52 12
09 29
OA p 70 50 10 2A E 65 45 05
OB u 75 55 15 2B y 79 59 19
oc RET 9B 9B 9B 2C TAB 7F 9F 9E
OD I 69 49 09 2D T 74 54 14
OE - 2D SF lC 2E w 77 57 17
OF = 3D 7C lD 2F Q 71 51 11
10 v 76 56 16 30 9 39 28
11 31
12 c 63 43 03 32 0 30 29
13 33 7 37 27
14 34 BACKS 7E 9C FE
15 B 62 42 02 35 8 38 40
16 X 78 58 18 36 < 3C 7D 7D
17 z 7A SA lA 37 > 3E 9D FF
18 4 34 24 38 F 66 46 06
19 39 H 68 48 08
lA 3 33 23 * 3A D 64 44 04
lB 6 36 26 3B
lC ESC lB lB lB 3C CAPS * * *
lD 5 35 25 3D G 67 47 07
lE 2 32 22 FD 3E s 73 53 13
lF 1 31 21 * 3F A 61 41 01

* = special handling

III.l6

H. SERIAL PORT (see peripheral connector on console)

SKCTL (Serial Port control)(D20F): This address writes data into the
register that controls the configuation of the serial port, and also the
Fast Pot Scan and Keyboard Enable.

D7 D6
D7

D6)
DS
D4

D3

D2

D1

DO

D5 D4 D3 D2 D1 DO

(Bits are normally zero
and perform the functions
shown below when true.)

Force Break (force serial output to zero (space))*

Serial Port Mode Control (see mode chart at end of
Serial port description, page II.34) .

Two Tone (Serial output transmitted as two tone signal instead of
logic true/false.)

Fast Pot (Fast Pot Scan. The Pot Scan Counter completes its
sequence in two TV line times instead of one frame time. The
capacitor dump transistors are completely disabled.)

Enable Key Scan (Enables Keyboard Scanning circuit)

Enable Debounce (Enables Keyboard Debounce circuits)

DO-D1 (Both Zero) Initialize (State used for testing and initializing
chip) **

OS SHADOW: SSKCTL (hex 232)

The OS enables key scan and debounce and may change the other bits for
different I/O operations. In particular, an aborted cassette operation may
leave the two tone bit in the true state, causing undesirable audi o signals.
This may be corrected by writing hex 13 to both SKCTL and SSKCTL after doing
I/O and/or before modifying the audio registers.

* NOTE:

**NOTE:

When powered on, serial port ou tput may stay low even if this bit
is cleared. To get S.P. high (mark), send a byte out (recommend
00 or FF).

There is no original power on state. Pokey has no reset pin.

III .17

SKSTAT (Serial Port-Keyboard Status)(D20F): This address reads the
status register giving information about the serial port and keyboard.

D7 D6 DS D4 D3 D2 D1 l DO I
D7 = 0 Serial Data Input Frame Error

D6 0 = Serial Data Input Over-run

DS 0 Keyboard Over-run

D4 0 Direct from Serial Input Port

D3 0 Shift Key Depressed

D2 0 Last Key is Still Depressed

(Bits are normally true
and provide the following
information when zero.)

Latches
must be
reset = 1
(SKRES)

(DS and D6 are set to
zero when new data
and same bit of IRQST
is zero)

D1 0 = Serial Input Shift Register Busy

DO = 1 Not Used (Logic True)

SKRES (Reset aboYe Status Register) (D20A): This write address resets
bits 7, 6, and 5 of the Serial Port-Keyboard Status Register to 1.

not used

SERIN (Serial Input Data)(D20D): This address reads the 8 bit parallel
holding register that is loaded when a full byte of serial input data has
been received. This adJress is usually read in response to a serial data in
interrupt (IRQ and bit 5 of IRQST). Also see IRQEN.

D7 D6 DS D4 D3 D2 D1 DO

Serial I/O Port Connector Pinout:

2 4 6 8 10 12
0 0 0 0 0 0

0 0 0 0 0

3 5 7 9 11

1. Clock In 2. Clock Out
3. Data In to c.Jmputer 4. GND
s. Data Out of Computer 6. GND
7. Command 8. Motor Control
9. Proceed 1 o. +5 I Ready

11. Audio In 12. +12
13. Interrupt

See serial port description in OS manual for more details.

III. 18

SEROUT (Serial Output Data)(D20D): This address writes to the 8 bit
parallel holding register that is transferred to the output serial shift
register when a full byte of serial output data has been transmitted. This
address is usually written in response to a serial data out interrupt (IRQ
and bit 4 of IRQST).

D7 D6 DS D4 D3 D2 D1 DO

I. CONTROLLER PORTS (front of console)

PORTA (Port A)(D300): This address reads or writes data from Player 0
and Player 1 controller jacks if bit 2 of PACTL is true. This address
writes to the direction control register if bit 2 of PACTL is zero. I/O for
both ports (A and B) goes through a 6520/6820

Data Register-Addressed if bit 2 of PACTL is 1.

Joystick Operation
I I I I

D7 D6 DS I D4 I D3 I D2 I D1 DO
Right

Left
Back Right Back

Fwd. Left Fwd.

D7

I

I D7 :

Stick1
(Jack 2)

StickO
(Jack 1)

Paddle Operation
I I I

D6 I DS I D4 I D3 D2 I D1 I DO
L PTRIG2 I L PTRIGO

PTRIG3 PTRIG1

K b ey oar d c t 11 on ro 0 t' er Jpera 1on
I I I I I I

DO I D6 I DS I D4 I D3 I D2 I D1 I

I L._

._____Top Row
2nd Row Jack
3rd Row
4th Row

)

Top
2nd
3rd
4rd

2

O=Switch pressed
1=Switch not pressed

O=Switch
1=Switch

Row) Row
Row
Row

pressed
not pressed

Jack 1

Control Re ister-Addressed if bit 2 of PBCTL is 0
I I I I I I

Each bit corresponds to a jack pin

O=input
1=output

OS SHADOWS: STICKO (hex 278), STICK1 (279), PTRIG0-3 (27C-27F

III.19

the
PACTL ~Port A Control) ~D302): This address writes or reads data from

Port A Control Register.

Port A Control
D7 D6 DS D4 D3 D2 Dl DO Register

X 0 1 1 X X 0 X Set up register as shown
(X = described below)

D7 - (Read only) Peripheral A Interrupt Status Bit. Serial
bus Proceed line. (Reset by reading Port A Register.
Set by Peripheral A Interrupt.)

D3- Peripheral Motor Control line on serial bus (write).
(0 = On 1 = Off)

D2 -Controls Port A addressing described above (write).
(1 =Port A Register 0 =Direction Control Register).

DO - Peripheral A Interrupt Enable Bit. (Write) 1 = Enable.
Reset by power turn-on or processor. Set by Processor.

PORTB (Port B)(D301): This address reads or writes data from Player 2
and Player 3 controller jacks if bit 2 of PBCTL is true. This address
writes to the direction control register if bit 2 of PBCTL is zero. I/O for
both ports (A and B) goes through a 6520/6820.

Data Register-Addressed if bit 2 of PBCTL is 1

Joystick Operation
I I I I

D7 D6 DS I D4 I D3 I D2 I Dl DO
Back Right Back Right

Left Fwd • ./, Left Fwd.,
~'-------~~------J, ' ~~------J~

Stick3
(Jack 4)

Stick2
(Jack 3)

Paddle 0 eration
I I I I

"---PTRIG7

b Kevl oar d c ontro 11 0 er 1p_erat1on I I I I I I I
D7 I D6 I DS I D4 I D3 1 D2 I Dl I DO I

l L_

'--Top Row} 2nd Row Jack
3rd Row
4th Row

4

III. 20

Top
2nd
3rd
4rd

O=Switch pressed
!=Switch not pressed

O=Switch pressed
!=Switch not pressed

Row} Row
Row
Row

Jack 3

Control Re ister-Addressed if bit 2 of PBCTL is 0
I I I I I I

Each bit corresponds to a jack pin

O=input
1=output

OS SHADOWS: STICK2 (hex 27A), STICK3 (27B), PTRIG4-7 (280-283)

PBCTL (Port B Control)(D303): This address writes or reads data from
the Port B Control Register.

D7
X

Read Onl:z::
I I I Port B Control

D6 I D5 I D4 I D3 D2 D1 DO Register
0 1 1 X X 0 X Set up register as

shown (X=Described
below)

D7 (Read only) Peripheral B Interrupt Status Bit. Serial
bus Interrupt line. Reset by Reading Port B Register.
Set by Peripheral B Interrupt.

D3 Peripheral Command Identification. Serial bus Command
Line.

D2 Controls Port B addressing described above.
(1= Port B Register 0 = Direction Control Register)

DO Peripheral B Interrupt Enable Bit. 1 = Enable.
Reset by power turn-on or processor. Set by processor.
(Set to hex 3C by OS IRQ code)

POTO- POT7 (Pot Values)(D200-D207): These addresses read the value (0
to 228) of 8 pots (paddle controllers) connected to the 8 lines pot port.
The paddle controllers are numbered from left to right when facing the
console keyboard. Turning the paddle knob clockwise results in decreasing
pot values. The values are valid only after 228 TV lines following the
"POTGO" command described below or after ALLPOT changes.

D7 D6 D5 D4 D3 D2 D1 DO

Each Pot Value (0-228)

OS SHADOWS: PADDLO - 7 (hex 270-277)

III.21

ALLPOT (All Pot Lines Simultaneously)(D208): This address reads the
present state of the 8 line pot port.

pot

I D7
Pot

7

Capacitor dump transitors
scan mode (bit 2 of SKCTL)

I I
I D6 I DS D4 D3 D2

number:
6 5 4 3 2

8 Pot Line States

must be turned off by either going to fast
or starting pot scan (POTGO).

Dl DO

1 0
0
1

Pot register value is valid.
Pot register value is not valid.

POTGO (Start Pot Scan)(D20B):

No
Data Bits Used

This write address starts the pot scan sequence. The pot values
(POTO - POT7) should be read first. This write strobe is then used causing
the following sequence.

1. Scan Counter cleared to zero.
2. Capacitor du~p transistors turned off.
3. Scan Counter begins counting.
4. Counter value captured in each of 8 registers (POTO -

POT7) as each pot line crosses trigger voltage.
S. Counter reaches 228, capacitor dump transistors turned

on.

(Written to by OS vertical blank code)

TRIGO, TRIGl, TRIGZ, TRIG3 (Trigger Ports)(O DOlO, 1 DOll, 2 D012,
3 D013): These addresses read port pins normally connected to the joystick
controller trigger buttons.

Not Used
(Zero Forced) DO

0
1

button pressed
button not pressed

OS SHADOWS: STRIG0-3 (hex 284-287)

NOTE: TRIGO thru TRIG3 are normally read directly by the microprocessor.
However, if bit 2 of GRACTL is 1, these inputs are latched whenever
they go to logic zero. These latches are reset (true) when bit 2
of GRACTL is set to 0.

III.22

PENH (Light Pen Horizontal Color Clock Position)(D40C): This address
reads the Horizontal Light Pen Register (based on the horizontal color clock
counter in hardware). The values range from 0 to decimal 227. Wraparound
occurs when the pen if near the right edge of a standard-width screen. PENH
and PENV are modified when any of the joystick trigger lines is pulled low.

D7 D6 D5 D4 D3 D2 D1 DO

H7 H6 H5 H4 H3 H2 H1 HO

OS SHADOW: LPENH (hex 234)

PENV (Light Pen Vertical TV Line Position)(D40D): This address reads
the Vertical Light Pen Register (8 most significant bits, same as VCOUNT).

D6 D5 D4 D3

LP8 7 6 5 4

D2 D1

3 2

DO

1 0 LPO not read. Two line
resolution supplied.

OS SHADOW: LPENV (hex 235)

Front Panel (Controller) Jacks as I/O Parts:

PIA (6520/6820)
Out: TTL levels, 1 load
In : TTL levels, 1 load

Port A Circuit (typical):

~-----f - . ..:.L. • 001
6520 (A) I

Port
220

T

Port B Circuit

6520
.001

"Trigger" Port Circuit (typical):

CTIA Trig 220 1\/V\J.-~---1
l .001

T

III. 23

Jack

Jack

Jack

Controller Port Pinout:

PIN JOYSTICK

1 Forward

2 Back

3 Left

4 Right

5

6 Trigger Button

7

8 GND

9

* Write
** PORTA or PORTB

Male
(console)

Controllers
PADDLE (POT)

A(Left)Trigger

B(Right)Trigger

POT B(Right)

+5

GND

POTA (Left)

*** STICK 0, 1, 2 or 3

III. 24

Female
(connector)

HARDWARE
KEYBOARD REGISTERS

Top Row* Bit 0 or 4**

2nd Row* Bit 1 or 5**

3rd Row* Bit 2 or 6**

Bottom Row* Bit 3 or 7**

1st Column POT 1,3,5,7

3rd Column TRIG0,1,2,3

+5

2nd Column POT 0,2,4,6

OS
VARIABLES

Bit 0***

Bit 1***

PTRIG0,2,4,6
Bit 2***
PTRIG1,3,5,7
Bit 3***
PADDL1,3,5,7

STRIG0,1,2,3

~

PADPL0,2,4,6l

IV. SAMPLE PROGRAM

This assembly language program illustrates the use of players, missiles,
and display lists. The diagram on the next page shows what the display
looks like and which objects are used. The comments in the program listing
describe how it works.

IV.l

.-:::

'"

TV LINES

AFTLR

STAin OFl'
DlSl'LAY

CHECKERS DISPLAY

Color Clocks >
(decimal) 192

0 oO
"D~O

.... · . . I . 'I
l .. I 4 . ~ ' • I

. \' :, • ... ·~· . ·i, . . "
• ' ·_ rc: I(::it IH' ~·i~;-o: ' iF;r: · ::rc:' :(:;;· IHI ··-~~ .. A T .A R X .:L: '9 a 0 . • . •

• · :. .. 1111~1! ~~ ~ ,, ! ~;riiUIIIIIW!Ill ~~~ 1 t'UIIIIIOIIIIII~~ l'l]l~ l'lll~llliiUUIIIIIlll'J: I r~ !I~IIIIUIIIIIIIIJ .:: : . I

l,.,.~~~·.:.e :·' 1"' e ,l,,lil, e .rl., l~ .e .. :~ ... · I

. .. · :· : .. • ·,

1

: :!~'J!!I~I!iiC:1iir1 ?i'~il~l~rrl: · ~ ·e,
1 1

· : rll,l'l:il~l' · •·> Miili:I!J ·i ._ .. :·: _: ·. · ...
. ' 'jl'~ili~l j 11111". ! . 'I'll I' ., t' '11'111'11'' '. -., ... ' •• :. I I ' ; • • 4 • : ;' ; • I ~i I ' . ~ ' :~ j -1 ·-: : .. ·lj· .. ·J ,~e, · "·· ,- ·. ·'I· -8 ·, .. ··I·. !·Jio - ~ .·,. • . --

•.· :; , .· .·. i~~;::~r-~jf'7 t 11~~;};r, :if!JiiiJ:li :i.?~YI:'H II!I~i ;{' :. :~ ~;
• •• 1. ~- ,. ~~~~:;l;,,·: .,·,. , .. l!·).·.'k lr,;; . ,,:f'l ''\l:' •; ~i)'i :ll'il!' ··,,-~.-~· l!·!!,,.,·, .. , :,·~:: i · i_; . . .' ._..i .:;(·: .> ',... ' ::.-:'(.)' ~- i ' ,; 1'1 '· ! : 'I· . . . • ' ' ' . 'I'' . ~- 'if: :· .;
. . . ': l ! . ;,, ,, i;·· ,. ·: !I'.;' I' .· :' ! ,,. :, ' . I '• i I if, !I _· ·:·: -~~ .. . '

•, . I , t! ; ' •" '· :, ' ... , 1 ., • •• ' • , · , , • I I I '1 • -. ,'.
• r • ,., .. 111 I. . : I ' r J I ,.:·I ., I f I . I • • • •I '·' ' • • •

; : : . i. ~~IAI:!t li!lt:r . ~!~: ; J!liill:il . ~~~~ , :!liiJI't : ~~~~.: 111.1 ~!1· '' : .· . . . ·· .. · .

. · .· ; :l.:lrl li~ 11 ;: : 1' 1
:..: i; lit'/ 11 I ... ~~111.~. :J /!~!IJ: · ~~~ID~ }1:1' :!II · .~!t I • ; · ... ·. ·

:. . :·· · ... · llll: :· llllllll :;: j:: I! ·I' 1lllll1:-. :-J !: . ~-! ::;,~ 11111111 ·::J, j' ! ::. ~ 11111111 .· 1

1

.,11'11: :1! :. l •

• • ... :: ,· · .. tt11111111111111ii ii llllllllllllllllllllllnllllillln)llllllllllllllllilt i d1nmunn1111UIIh li il111l . · "··· I I:: ·X· .. rr.r:·r·rf:·:(c; ' : ."H:J,~:~; ''1 ;f,::Y.t :ij . , .. ' ;'. . '' .
D

Player/
Missiles

PO Pl P2 P3

M3

38 3C SC 7C 9C ' BC
_

Player/Missile Horizontal Position
Register Values (hex).

(

End of Vertical Bla nk

2 4 I\ 1 a n k L i rw s
20 Characters ac ross by fl 1 in(·s higlr
16 II II 11 II 11

fl R\)WS

1 6 C: lr a r a c t , , r ~. :J c r,' s s b v 1 r 1 I i 11, · ;-. li i ~;,

16 ClrarCJctPrs across I''Y 8 1 i 1w s 1r 1glr

H
<
w

<1000

()409
1>41!0
022F
D000
D008
02C0
0230
0211
D01D
D407
026F
0200
D40E

0080
004t
0040
0020
0010
000t
0000
0010
0020
~IB0

0040
0050
0o.oc;,
0070

;~ TITlE "RT HF-'1 «nn (H~Ofk I • I ' HH'.' ~-' '' r · ·H11.-J '2/: l, ':JH"

~c;, ,(.0~¥RI OHT ATRRI 1980
40
5fl , THIS IS RP~ fY.HI1PLE OF H [dS~LA'< li~.T
0! , Pf..>IJI.JUCE THE CHEO' EPS Rlli.J THE TUP All[>
70 , PLA'<EPS ARE USED FOP THE RED SOUf1RE5
811 , CHAtlGH~G THE COLOP PEGISTEPS

WHifH L1~- fS fHf1~HC HI' Mf1PPirl•J TIJ
f<UT Tul·l l-<1 oF·i.JEI<S OF THE BOAF-'u

THIS GIVES 6 COLOPS WITHOUT

:.,0 . 111::.·c.llfS H~'E. IISE [J FOF' THE LFFT f11ll• !'· !f,tll f 'l>F.l•FI' S
i<!HH1 , THE ~-~· OfJI<f111 5lf1f.·TS AT TH~ l IJCHT lUll ~-~·E(If-If[• B'< ~11f:

<11111 , f1 FEW TRIC.!<S ARE USEI.J TfJ SfN~ f-H11- f<IIT ~URTHEf- UPTir11.CATIUil IS HISSI~'LE.

(:)12'il , THIS IS A PAM E:ASF.i.J Pf'0GI'f111 ~lHICH I'UHS ~liTH THE A':'.SEI1BLER CRF:'TI<luGL lmT R
0130 .ROM CARTRIDGE
1'1140
'il1'50 .COLLEEN (ftTARI 800> EQUATES
0161i!
'!1170 CHBASE
0180 Dl·lACTL ~
0191i!
0200
0210
0220
0230
0240
02'50
0260
0270
0280
0290
0300

SDMCTL =
HPOSP0
SIZEP0
PCOLR0 e

SDLSTL
SDLSTH
GRACTL
PMBASE =
GPRIOR
VDSLST
NMIEN

SD409
SD400
S022F
SD000
SD008
S02C0
S0230
S0231
SD01D
S[)407
S026F
S0200
SD40E

03:10
0320

;DISPLA¥ LIST EQUATES

0330 INT
0340 JMPWT
0350 RELOAu
0360 '-ISC
0370 HSC
0380 JUMP
0390 BLANK1
0400 BLANK2
0410 BLAWG
0420 BLANK4
0430 BLANK'S
0440 BLANK6
04'50 BLAilK7
0460 BLAIWB

sse
S41
S40
S20
S:10
1
0
S:10
S20
S30
S40
s:se
f60
$71)

,DISPLAY LIST INTEPPl~T <BIT 7 OF NMI STATUS>
, JUMP ANu WAIT UNTIL Ell(• OF NEXT VERTICAL SLAW; <3 B'<TES >
; RELOAD MEI1 SCAN COUIHER \3 BYTES>
, VERTICAL SCROLL ENABLE
, HOP I ZOIHAL SCROLL ENA8LE
; JUMP WSTRUCTION <3 B'<TES>
, 1 BLANK T'-1 LINE
, 2 BLAilK LINES
'3
;4
;'5
.6
,7
- 8 BLAIW T'·/ L IllES

H
<
+--

nTAI>I 800 CIIECI<!:.RS ()ISPI AY BY C SHAW :l/31/80

01'100

"l\!.10

0000
0021
'll-1 2:!
'1"!24
>!1'125
m127
01128
0029
"lfl2F
0010
n<n2
'l014
11039
11011
no ta
'lllt9
" 1110

<1000
emH
\}<l02
'l{l!'jJ

' '004

~H.H~O

, .. H~s~e
~H\1 ~

"11\-te

0470
0480
13490
0500
0510
0520
0530
0'540
05'50
0560
0~70

0580
0590
0600
06l0
0620
06!0
0640
0650
0660
0670
0680
0690
0700
0710
0720
07.!0
0740
0750
0 760
0 770
IP80
0 790
0800
l'l8Hl
1-la ; n
~'~'J '"'
lilf3•11l

PAGE

HHilFF = $20 ; USED TO GET INTERNAL CODE FOR UPPER CASE ALPHANU~IERIC .

; INTERNAL CHARACTER CODES

Sf> I ~ ' -INTOFF
AI = 'A-INTOFF
Cl = 'C-INTOFF
DJ = ' D-JNTOFF
El = ' E-INTOFF
Gl = ' G- INTOFF
HI ~ 'H-INTOFF
II ~ ' 1·-INTOFF
0 1 ' O·· INTOFF
PI ~ ' f> - INTOFF
RI ~ ' R- INTOFF
Tl ~ ' T-INTOFF
VI = ' Y- INTOFF
Nl.l = ' 1 - INTOFF
NBI ~ ' 8 - INIOFF
N91 = '9-INTOFF
N01 = ' 0-INTOFF

, CttEn'ERS EQUATES

.CODES FOR SPECIAL CHECKERS CHARACTER SET

EMPTY s

CHECKER=
KING ~

CIJR<; =
80Rl •ER =

CL P II ..
Uf'1 .,

llH<lP
f'tiH

0
1
2
J
4

0
S80
f f_ll

S'5000

; EMPTY SQUARE
;ORDINARY CHECKER

; CURSOR <X>
; USED FOR TOP AND BOTTOM BORDERS OF BOARD

; PLAYER 0 <HUMAN>
; PLAYER 1 <COMPUTER>
- BORDER COLOR <USED TO SET UP 2 MSB ' S OF CHAR>
, PLAVER MISSILE BASE ADDI<ESS & PROGRA~I LOCATION

(

