SWEET 16 OPERATING SYSTEM

www.atarimuseum.com
EXTERNAL REFERENCE S?ECIFICATION
SUPPLEMENT 3
- HANDLER LOADER -

SCOTT SCHEIMAN

8-31-82

PY. TR TIRE

TABLE OF CONTENTS

1.0

1.1

. IH ”
O O v A W N

s s e

WEUWEUY WOWL W N
NN

W NNNNRN

W oW WL

»H

PURPOSE
INTRODUCTION
CONSUMER PROFILE
INTERFACE WITH OTHER PRODUCTS
FAMILY OF PRODUCTS

DISTRIBUTION S
APPLICABLE DOCUMENTS
REQUIREMENTS

INTERFACES . . . e e e e e e e

.1 PHYSICAL REGUIREMENTS e e e e el
.2 LOGICAL REQUIREMENTS
.3 MAN/MACHINE INTERFACE

FUNCTIONAL DESCRIPTION . .
POWER-ON (COLD START) . .

()

1

1

1

2 APPLICATION-INITIATED LOAD . .

2.1 APPLICATION-INITIATED OPEN PDLL (TYPE 4)

2.2 LOAD, RELOCATION. INITIALIZATION, USE .

3 SYSTEM RESET (WARM START) REINITIALIZATION.

4 SUBROUTINE INTERFACES
I : |

PERFORMANCE REQUIREMENTS NI

DESIGN REQUIREMENTS .
PACKAGING REQUIREMENTS

SPECIAL REQUIREMENTS

'APPLICABLE STANDARDS -

.1 PERIPHERAL POLL DURING PONER ON PROCESSING (TYPE 3)
-2 HANDLER LOAD AND RELOCATION DURING POWER-ON PROCESSING.
.3 INITIALIZATION AND LINKING DURING POWER—-ON PROCESSING .-

wn “w b » N N

VOO @O~NNOC> OO0

[V ¥
9 9
T IS

n
Q&ﬂi

N
0
W id

[N

Page 1

e

1. 0 PURPOSE

This document describes a set of requirements to achieve the”
following goals: : -— -

o Standarqized polling, loading and linking of device handlers via
the serial port during power—on;

o Standarqized polling, loading and linking of device handlers via
the §er131 port after power-on by request of the Tunning
applxcation through simple software interfaces.

The objective of this document is to specify the external
characteristics of the routines which are to reside in the SWEET14 ROM
Operating System to implement these handler loading functions.

However, these routines.work in a larger environment of procedures
residing in the SWEET16 memory. References to these programs and
procedures will be made when necessary to clarify the polling.,
loading, and linkage processes in the context of the whole system.

1.1 INTRODUCTION

The operation of loading a peripheral handler is viewed here from
three perspectives: '

o Polling——finding out if a peripheral is present, and which one;
o0 Loading and relocating.the handler via the serial port;
o Linking the handler into the system.

i Two types of polling are specified here. The first (Type 3)
occurs during power—on (cold start) processing. This poll makes no
assumptions about what peripheral(s) may answer the poll. Each
peripheral which answers this poll then has its handler loaded at the
low available memory boundary (MEMLO). The poll is repeated until no
peripheral answers. See section 3. 2.1.

., The second type of poll described in this document (Type 4) is
used when an application asks the operating system to load a handler.
This poll differs from the first type in that information is known
about which peripheral is being polled: In a sense this poll is
really a form of conditional status request. If the device does not
answer it is not there. If it answers, the answer contains status
information which 1is subsequently used to load the handler. See
. section 3.2.2.

P aﬁ ading

[Note: Three other types of Poll exist, named Types O, 1, and 2.
These three .types are the older polls which have been used to
avtomatically load handlers on the A400/A800 computers. These polls
are described in reference C. See also the note in section 1.3
regarding compatibility between handlers loaded with this new scheme

Page 2

t.

and handlers loading under the older schemes.] 5az;;'

Loading of a handler is achieved in a uniform manner regardless of

which

type of poll has been used. (In fact, the poll need not even

precede the handler loading operation.) The loading operation is
documented in two pPieces: serial port commands (described in this
document, section 3.2.1.2) and relocatable format of the handler
(described in reference D).

Handler linkage is fairly complex, since it is at this stage that
the handler occupies RAM resources of the SWEET16 computer and must
coexist with the many other pieces of software in the computer. The
linkage must be understood in all of these terms:

a

Availability of RAM resources for the handler: RAM is made
available for loading a handler and contiguous variables by the
0S during power—on initialization at the MEMLO boundary if the
peripheral answers Poll Type 3 (section 3.2.1). RAM is made
available for loading the handler following a Type 4 Poll by the
application (section 3.2 2). No other RAM is made available by
the 0S. Further RAM allocations may be made via transaction
between a loaded handler and the calling application (outside
the scope of this document).

Making RAM use known to the system (MEMLO): The handler size is
kept in the handler linkage table; this size is added to MEMLO
when the handler is first loaded., and subsequently during the
warm—-start process. This handler size is set to 1ero by the
operating system if the handler was not loaded at the MEMLO
boundary, in order to prevent modification of MEMLO when the
handler size is added. See section 3.2.1.3. .

CI0D linkage (handler table entry): See sections 3.2.1.3,
3.2.2.2, and 3. 2. 4. _. ;

First initialization (immediatelq vpon loading): See sections
3.2.1.3 and 3.2.2.2. : : : .

System reset (warm start) linkagef This is done by chaining
handler linkage tables; see section 3.2.1.3.

Re—initialization (warm starf operations): Section 3.2 3.

M Muz zﬂ"vt-nh: '

, .
! !

Page 2

1. 2 CONSUMER PROFILE

Does not apply.

1.3 INTERFACE WITH OTHER PRODUCTS

Handlers loaded via the procedures described here must interface
with CIO and SIO according to references A and B.

(Note: The power—up time loading process described here may
interact poorly with handlers loaded by the 400/800—-compatible
technique. It has not been possible to fully analyze the various load
combinations which may occur. However, a partial analysis has been
undertaken and the results look promising overall for proper behaviar
in most practical cases. In order to assure that this is true., a more
thorough investigation of the procedures to be used by
400/800-compatible handler loading must be undertaken before any more
such devices are designed. Presently the 850 Interface Module is the
only such device. It is known that (readily correctable) flaws exist
in the 850 handler loading process.]

The power—up processes described here will work with DOS 2 except
when an AUTORUN. SYS program fails to return control to the operating
system to complete the power—up procedure. In that case, however, it
is permissible to program that AUTORUN. . SYS file to perform the
remaining 0S initialization._including the handler polls and loading.

At system reset (warm start) time, each previously loaded handler
must be reinitialized. This presents a possible problem if the
handler has been modified in any way after it was loaded. If the
handler was loaded under BASIC, for example, the user could
inadvertently delete the handler (eg.., by typing NEW). Under DOS 2,
loading of the DUP package swaps memory above the FMS out to MEM. SAV;
this happens to be the memory automatically loaded handlers occupy.
(DOS 2 DUP traps system reset and reloads MEM. SAV before handlers are
reinitialized. Howewver, DUP calls to handlers which are swapped out
are fatal.) In any case, it is the responsibility of applications

Moau.d - a .

writers and systems software writers to allow for coexistence of
auvtomatically loaded handlers. Whenever software does not fully
protect against such problems, the users manuals for such soF?ware g
must inform the user of the proper use of the products to avoid .g

proﬁlems.

Page 4

1. 4 FAMILY OF PRDDUCTSA

The procedures described here apply to SWEET1é-compatible
peripherals which require handlers to be_loaded into the CPU memary.
Major support is given to loading handlers from the peripheral itself.
Minor support is given to loading handlers in other ways, eg. from
diskette (refer to section 3.2. 4).

1.5 DISTRIBUTION

Does not'applg.

2.0 APPLICABLE DOCUMENTS

Ref. A: ATARI PERSONAL COMPUTER SYSTEM OPERATING SYSTEM USER’S
MANUAL, number C0146555. Current revision is November 1980.

Refs. B and C: ATARI HOME COMPUTER SYSTEM SERIAL INPUT/OUTPUT
INTERFACE USER‘S HANDBOOK, PARTS I AND II (software department
internal documents). :

Ref. D: SWEET146 0OS ROM EXTERNAL REQUIREMENTS SPECIFICATION-
SUPPLEMENT 2 -- RELOCATING LOADER (internal document).

Page S

. “i G .

.t “A'Jt

3. 0 REQUIREMENTS

3.1 INTERFACES
APPLICATION INTERFACES

When handlers are loaded avtomatically as a resuvlt of power-on
poll and loading procedures described here, the lower memory boundary
MEMLO shall reflect the size of loaded handlers.

The procedures described here allow an application to load a
handler after power—up time into an application—supplied RAM area. A
normal OPEN call to CIO specifying a device whose name is not in the
handler table shall result in issuing a Type 4 Poll to find the
device, or the application may make the Poll unconditional by setting
HNDLOD nonzero before the OPEN (section 3.2.2.1). 'If the device
answers the poll, the handler size is in the OS variables DVSTAT
through DVSTAT+4; the application will establish a RAM area for the
handler and inform the 0S by setting DVSTAT through DVSTAT+4 and
setting HNDLOD nonzero. Any subsequent I/0 call (except CLOSE) to 1
that IOCB shall result in the loading of the handler into the
application-supplied area, followed by execution of that I/0 command
(section 3.2 2. 2).

The cassette buffer shall be used by the loading procedure;
therefore, the application must not need any data in the cassette
buffer when requesting handler loading from the OS.

A procedure to unload handlers (except those loaded at power—on at
MEMLO) is described in section 3. 2. 4. The application sets HNDLOD
nonzero prior to issuing a CLOSE command to the handler through CIO.
This results in unlinking the handler from the system. Note, however,
that implementation of this feature is the responsibility of the

handler and is not automatically performed by the OS.
!

SYSTEM INTERFACES

The routines described here interface with peripherals in two
basic ways: serial commands, and serial data. Within the context of
this specification, the serial commands are the Types 3 and 4 Polling
commands, and the handler loading commands (sections 3.2.1.1, 3. 2.2. 1, =
and 3.2.1.2). Serial data in this context is the handler being loaded: 1
the block structure for loading a handler is described in section
3.2.1.2; the record structure consists of rélocation records described
in reference D.

‘v-'iu»i 8

§

H

Loaded handlers interface with the I/0 portions of the operating -
system as described in reference A. lLoaded handlers also interface
with the initialization portions of the 0S described primarily here in
section 3.2.1. 3. .

Three utilitq subroutines are made available for handlers loaded
into the system. They are described in section 2. 2. 4.

Page &

- Sl

-

Loaded handlers interface with other parts of the sqsteﬁfg;ihérilg
by the fact of their occupying RAM. Careful study should be made of

the effects of loading handlers at MEMLO, particularly when using the
DOS 2 product. Bl

3.1.1 PHYSICAL REQUIREMENTS

There are no physical requirements.

3. 1.2 LOGICAL REQUIREMENTS

The routines described here are part of the SWEET16 resident 0OS
and shall use RAM in the 0OS pages only (pages O, 2, 3, 4). These
variables shall be reserved for 0S use, and will either be used
exclusively by the OS routines described here or shared with other OS
routines (non—overlapped use). Use of these variables by any other
routines in the system will produce unpredictable results.

Page 7

IEYTETRR T T S

[

3. 1.3 MAN/MACHINE INTERFACE .

Does not apply.

3.2 FUNCTIONAL DESCRIPTION

3.2.1 POWER-ON (COLD START)

This section describes the sequence of events taken by the
operating system during power-on. This consists of actions which have
existed in the 400/800 revision B operating system plus new operations
which are the SWEET16 enhancements of this document. Only the degree
of detail needed here is given.

This section is an outline of the steps performed. Details of the
new operations are given in subsequent sections. '

1.

2.

The OS shall set the flag WARMST zero (means coldstart);

DOSVEC shall be set pointing to default built—in application
(logo screen display);

MEMLO (O2E7 and O2EB hex) shall be set to 0700 hex;

0S resident I/0 handlers shall be initialized and have their
entry points moved into the handler table (HATABS);

Application cartridge ("A") shall be initialized, if present;

Cassette or disk boot occurs depending on what is attached to
the system.. If no disk or cassette is present, a peripheral
may respond to the ABOO—compatible Type O Poll; if such a
peripheral answers the poll: it shall be loaded at this time
as if it were being loaded from diski
. . ‘
If disk (or Type O-responding peripheral) boots, operating
system shall pass control to DOS initialization at DOSINI. Th
DOS may optionally perform Type 1 Polling and/or Type 3 ’
Polling and load subsequent peripheral handlers. The DOS may
optionally not return caontrol to the Operating f
System——however, this. is not the recommended practice;

FETTVORYTT RPN R

If DOS initialization returns to operating system:. it shall
then perform Type 3 Polling and load handlers at the MEMLO
boundary and initialize them. Type 3 Polls shall be repeated ~
until no peripheral answers. (Sections 3.2. 1.1, 3.2.1.2, :
3.2.1.3); g

The operating system shall complete the system initialization
and then start the application cartridge, if present, or Tun

. the application loaded at DOSVEC.

Page B

3. 2 1.1 PERIPHERAL POLL DURING POWER-ON PROCESSING (TYPE 3)

Type 3 Polling occurs following DOS loading and 1n1t1alxzatxon
This poll is performed by the operating system:; however, the poll may
be performed by the initialization portion of the DOS (eg..
AUTORUN. SYS as part of DOSINI processing). It .is acceptable for the
DOS initialization to perform Type 3 Polling and handler loading and
subsequently return to the operating system which shall then repeat
Type 3 Polling. This works because peripherals will not respond more
than once to a Type 3 Poll.

Once only, at cold-start time, the operating system shall send a
Type 3 Poll Reset command over the serial port. This command shall be
sent during cold—start processing, regardless of whether the cold
start is hardware or software initiated (that is, the Vcc/READY line
may or may not have fallen to zero prior to the Poll Reset). This
command follows the disk and cassette boot operations, if any., and
precedes the first Type 3 Poll command. The Poll Reset command shall
have the following format:

o Device address of 4F hex (peripherals looking for the Type 3
Poll Reset command may ignore the device address and look only
for the poll command ‘@‘; however., the device address will
always be 4F hex and the peripheral may check this};

o Command o% ‘@’ (40 hex) (peripherals looking for the Poll. Reset
command will always look for the ‘@’ command}i

o0 Both Auxl and Aux2 shall be 4F hex to distinguish the Type 3
Poll Reset command;

o Command checksum, which the peripheral checks.

Peripherals which will respond to the Type 3 Poll must also watch
the serial port for the Poll Reset. No peripheral will trespond to th
Poll Reset (no response should be sent to the computer). However,
when the Poll Reset command is sensed, each peripheral will re—enable
itself to respond to the Type 3 Poll (see below). :

The Type 3 Poll shall be a serial port command structured as
follows:

o Device address of 4F hex (peripherals looking for Type 3 Poll
may ignore the device address and look only for the poll command
‘@’; however, the device address will always be 4F hex and the.

peripheral may check this);

o Command is ‘@€‘ (40 hex) (peripherals looking for this poll will
always look For the ‘@’ command); :

LI

uol‘n,-ld.ﬂ.x .z.l‘ .

o Both Aux1l and Aux2 are zero (this d15t1nguxshes Type 3 Poll frono

Type 4);

o Standard command checksum (peripherals check this).

Page

9

- R T TR T.e TS

ISR WY
[Note: Command byte “@", 40 hex, 064 dec, is now reserkéggfpr
Type 3 and Type 4 Poll and must not be used on the serial port for any
other purposes, regardless of device address. Similarly, command byte
“?", 3F hex, 063 dec, is reserved for Types 1 and 2 poll.]

Peripherals which are to respond to the Type 3 Poll will keep a
count of SIO retries of this command over the serial port. Each such
peripheral is assigned a unique "slot" or retry on which it is to
answer. The peripheral must keep a Tunning count of the number of
Type 3 Poll retries following the last serial command which was NOT a
Type 3 Poll (even if that non—poll command was addressed to another
peripheral). In other words, each time a non—poll command is seen the
peripheral will reset its retry counter. Also, the peripheral must
not respond to a Type 3 Poll if it has already done so since the last
Type 3 Poll Reset command was sensed by the peripheral.

When it is the peripheral‘s turn (per retry count) to respond to
the poll, the peripheral will ACK the command and then return a
standard serial input data frame containing the following four data
bytes, which shall be interpreted as follows:

1. Low byte of handler size (in bytes; must be EVEN);
2 High byte of handler size;
3. Device serial 1/0 address to be used For.loading;'
4, Peripheral revision number.

The SIO call initiating the Type 3 Poll shall place these result
bytes in OS variables DVSTAT (O2EA hex) through DVSTAT+3 (02ED hex).
Successful return from SIO from the poll shall indicate to the 0OS that
the peripheral has a handler to be loaded. Unsuccessful return
indicates there is no zeripheral answering the poll and the polling
operation is not repeated.

-1
Various errors may occur during the loading or initialization of a

handler (see sections 3.2.1.2 and 3. 2.1. 3). In some of these cases,
it is unclear whether a non-Type 3 Poll command has been sent over the.
serial bus. A non-Type 3 Poll command is necessary in order to insure’
that the peripherals, which count retries of the Type 3 Poll command, —
do not get out of synchronization with the computer. Accordingly., 2
when such errors occur during cold—-start processing, the operating
system shall send a Type 3 Null Poll command over the serial bus
before sending the Type 3 Poll for the next polled peripheral. The
Null Poll shall have the same form as the Poll Reset (above), except
that Auxl and Aux2 shall have the value 4E hex. No peripheral should
treat the Null Poll in any special way, except that it should not be
confused with any other of the Type 3 Poll commands. No peripheral
should respond to the Null Poll in any way. The Null Poll command is
really just a place‘holder——effectivelg a serial -bus "NOP".

fabt

Page 10

Tl —

e

3.2.1.2 HANDLER LOAD AND RELOCATION DURING POWER-UP PRDCESSING".

(Note: The loading procedure described here is also used to load
handlers when the loading is application-specified after power—on has
completed. The only differences are where in RAM the handler is
loaded, and handling of loading errors. Accordingly, this single
section deals with both loading operations. The major point of view
is toward loading at power—on time to the MEMLO boundary; differences
for the application—initiated load are noted. See section 3.2.2 for
more on application—initiated loading.]

After a peripheral responds to the Type 3 Poll, the 0S shall then
compare the sum of MEMLO (O2E7 and O2EB8 hex) and the size of the
handler to be loaded (DVSTAT and DVSTAT+1, O2EA and O2EB hex) to
MEMTOP (02ES and O2ES hex) to determine that there is room to load the
handler. If there is insufficient toom, the handler shall not be
loaded, and the 0S shall issue a Null Poll command (3. 2.1.1) and
proceed with further Type 3 Polling (3.2.1 step 9).

Otherwise the peripheral handler is loaded, starting at MEMLO and .
proceeding unfil the load is completed. (Note: the load address may
also be application specified; see section 3.2.2.) The loading
operation shall be achieved using the Operating System’s relocator
(reference D). An appropriate call to the relocator shall be made,
specifing all parameters needed:

o Loading address. This shall be either a copy of MEMLO, or the
application—supplied load address (section 3.2 2.2). Before
handing this value to-the relocator, the 0S Type 3 Poll process
-shall insure that it is even—-valued by adding one if it is found
to be odd; :

o Zero—-page loading address. The handler will not load into page
zerao. This address shall be set to BO hexi

o Address of get—-byte subroutine described below.

1

The get-byte subroutine supplied to the relocator shall call on
SIO to get the handler relocatable object records from the peripheral
and then pass them a byte at a time to the relocator. The records
shall be read from the peripheral in numbered blocks of 128 bytes
each, numbering starting at O and going as high as needed (2535 max).
The cassette buffer shall be used for storing . each. block as it is
being fed to the relocator. The final block may be unfilled;
get-bytes will stop from the relocator when the End record is
processed, so the remaining portion of that block shall be ignored.

P TYNE T FEVY NN

A

Serial port load commands shall be as follows:
o Device address taken from Poll response;

o Loadlcommand “%*" (26 hex, 03B decimal);

Page 11

o Auxil

block number to be loaded;

o0 Aux2 = undefined (must be ignored by peripheral);

o Appropriate checksum.

If the peripheral is asked to supply a block whose number is out
of Tange, it will either NAK or not Trespond (preferable action is no
response). The reader will then pass error status to the relocator
which will pass the error on to the caller. At power—on, the caller
is the OS Type 3 Poll routine, which shall respond to the error by
ignoring this peripheral and continuing polling for other peripherals
(Null Poll:, section 3.2. 1.1, then 3.2.1 step 9). When loading is being
called by an application, the IOCB shall be closed and error 133
(Device Not Open) shall be returned to the application.

During cold—start processing, the 0OS shall ignore all parameters
returned by the relocator when relocation completes except the error
status. All relocating loader errors shall produce the rtesults of the
preceding paragraph. '

No check will be made that the handler is actuvally relocated
properly. Some errors will be detected by the relocataor; however it
is the responsibility of the peripheral designer to create a proper
device handler. The handler must occupy contiguous RAM, starting at
the load address. No restriction is placed on the use of this RAM
area (it may be code, variables, or data) except that the linkage
conventions (section 3.2.1.3) must be followed. When loaded under
applications request, the size of the area allocated for the handler
can be 'larger than the minimum required, and the handler may make use
of this extra RAM as needed (see section 3.2.2.2). When loaded at
MEMLO during power-up., the handler will specify its RAM needs (section
3.2.1.3 and section 3.2. 3).

[Ndte: a “"bug" exists in the 6502 processor where a JMP indirect
instruction will fail if the two-byte indirect pointer is relocated
across a page boundary. This may be avoided by placing all indirect
pointers on even addresses; since loading always occurs on even
boundaries, the pointer will never cross a page boundary.] , :

@l .

s,

'Y

Page 12

: L e

3.2.1.3 INITIALIZATION AND LINKING DURING POWER-UP PRDCESSIN%;ﬂgi‘

(Note: The handler initialization and linking procedures during
power—up processing are very similar to those during warm—start
reinitialization and application-initiated handler loading. Therefore,
this section serves for all processes. It is written in terms of the
power—up sequence, with occasional test conditions for the warm—-start
variations. The major differences in this procedure between power—up
- and warm—start are described in section 3.2.3. Application—initiated
load is described in 3.2.2. 2.3

Once loaded, a handler will be linked into the system in three
ways:

o The handler‘’s RAM usage will be declared;

o The handler‘s name and linkage table address will be entered
into the handler table; ‘

0 The handler‘s linkage table will be entered into a linked-list
of known loaded handlers for System Reset (warm start
reinitialization).

&

Al d

ey 8

Page 13

4

The handler will have a linkage table at its load éddreggé;Tﬁis
table contains the following: ‘

OFFSET
0 - 14
15

16 - 17
18 - 19
20 - 21

Byte 15 (checksum) is céiculated such that the wrap—-around—carry
sum of bytes O through 17 is FF hex (one ‘s—complement negative zero);

CONTENTS — -

Standard handle; entrq‘vectors (reference A):
OPEN vector:

CLOSE vector:

GETBYTE vector;

PUTBYTE vectori

GETSTAT vector:

SPECIAL vector:

initialization code JMP;

Linkage table checksum;

Handler size in bqtes'to add to MEMLO.
Handler linkage table chain forward pointer;

Zero (reserved for future expansion).

it is used by the operating system to check the integrity of the

linkage table during system reset (warm start) reinitialization.

bytes 0-17 may vary depending on load address the checksum will be
calculated after the handler is ;loaded. Bytes 18-19 point to the
handler linkage table loaded next. If this is the last handler
loaded, this forward pointer is null (zero).

Since

‘ll o

it

Page 14

L T

caaae gy L m T -

The initialization process for a newly loaded handler idﬁédigfelq
follows its loading: C

[(Note: All steps of this process are -performed by a subroutine
which is normally used as part of the 0OS process of linking new
handlers into the system. This subroutine can be called by other
system routines; the calling sequence is discussed in section 3. 2. 4.
As used during power—up loading of handlers following Type 3 Polling,
the MEMLO parameter used in step 4 shall be set on. indicating that
the handler‘s size is to be added to MEMLO. 1

1. The OS shall add the new handler linkage table at the end of
the linkage table chain. This is done by starting at the hea
of the chain, CHLINK (in the 0OS database)} and following the
pointers until a null (zero) pointer is found. For each

d

linkage table in the chain (except the last), the checksum is -
checked to verify the integrity of the linkage table; checksum

failure results in failure to initialize the newly loaded
handler. and the rest of this initialization procedure is

bypassed. No error is reported out of the OS during coldstart
(in this case, polling continues with a Null Poll, followed by

Type 3 Poll, 3.2.1 step 9). In the case of a non-0S caller,
the error shall be indicated to the caller by returning with

carry bit set. If the checksums are OK, the address of the new

linkage table, which is the load address of the handler, " is_
placed in the null pointer which was at the end of the chain.
Then the pointer in the new linkage table is nulled (zeroed);

2. The OS loader shall -then JUSR to the handler initialization
code; | T

2a. The handler will initialize itself, optionally utilizing the
handler table entry subroutine in the resident 0S (section
3.2.4). Errors occurring in the linking process will produce
linking failure (discussed below). :The handler will
initialize itself as follows: ‘ -

2b. Call the OS-resident handler table entry subroutine to add a
handler entry for this new handler;

2c. Optionally establish the linkage table handler size. The
handler size could simply have been loaded into the linkage
table at relocation time, in which case the handler
initialization procedure now takes no further action.
Alternatively, the handler can calculate the size and insert
the resvlt during this first initialization. The handler wil
calculate this size only once, and supply the result to the
operating system in the linkage table at this point during
power—up initialization. The handler will not modify these
bytes in the linkage table at any subsequent time. The 0OS

doa sty

b

11t

1‘ -—

flag WARMST can be used to distinguish power—on initialization
from subsequent warm—-start reinitialization. The handler size

need not be returned to the 0S if WARMST is nonizero. If the
handler calculates its RAM needs, it is responsible for

Page 135

~ —

insuring that the resulting addition to MEMLO does not exceed
MEMTOP. Also, it is the handler’s responsibility to ensure
that the size set by the handler is even—valued. It is safe i
the calculated size does not excaed the size reported by the
Type 3 Poll (section 3.2.1.1); :

2d. Return with Carry bit clear if there was no init error;
otherwise, return with carry set;

(Note: the handler init need not save any 6502 registers.)

3. If the handler initialized unsuccessfully (Carry returned set
the new handler linkage table shall be removed from the
linkage table chain using the routine described in section
3.2.4 for that purpose, and the handler installation is
terminated. In .this case, none of the following steps is
performed; no error indication is given out of the 0S during
coldstart, and polling continues with a Poll Reset followed b
further Type 3 Polling. In the case of a non—0S call to this
initialization process, the error shall be Treturned to the
caller by returning with the carry bit set.

4. If the handler initialization was successful (Carry returned
clear) the 0S shall then check the parameter to see what mode
of initialization is being performed, to determine whether or
not the handler size should be added to MEMLO. If the
parameter is set, then the handler size should be added to
MEMLO. If the parameter is not set, the handler size should
not be added to MEMLD. In the latter case, the handler size
entry in the handler linkage table shall be cleared to zero;

5. The handler size is added from the handler linkage table to
MEMLO (O2E7 and O2E8 hex);

6. The linkage table checksum shall be calculated and inserted
into the 'table. This is done by first zeroing the checksum;
then calculating the checksum of the first 18 bytes of the ‘
table; then storing the one’s complement of the resuvlting sum-
as the calcuvlated checksum of the linkage table. <

A

<l

In step 2, above, the handler may interrogate the system flag)
WARMST to determine the time of initialization. WARMST (0008 hex) =
shall be zeroed by the 0S at the beginning of power—on processing. :
Unless modified by other -code in the system, WARMST remains zero until
the [SYSTEM. RESET] key is pressed, when it is set to FF (hex). Should .
this be unacceptable to the handler initialization, the handler should
keep an internal variable to keep track of which initialization is
occurTing. ¢ 4

Handler table overflow error is a pos;ibilitj in step 2b, above.

The handler will return with Carry set to indicate initialization
failure, unless it performs some reasonable error Tecovery.

Page 16

Note:
O2ED hex).

g WY

.

The above procedure uses DVSTAT+2 and DVSTAT+3 (O2EC -and

v et

Page 17

lnﬂ"ﬂn . |ﬂ\'d‘h',b‘ KRN,

lv’«'xi

3.2.2 APPLICATION-INITIATED LOAD

Most of the loading and initialization processes of an
application-initiated load are identical-to those used for power—up
load. Those differences between the two (MEMLO handling) which affecH
the handler are discussed in section 3.2.1.3. The ma jor difference
lies in the polling processes used.

3.2.2.1 APPLICATION-INITIATED OPEN POLL (TYPE 4)

When an application calls CIO to perform an open, the following
shall occur:

1. The OS flag HNDLOD (0O2E9 hex) shall be intérrogated to
determine whether the application desires a Type 4 Poll for
the device being opened. HNDLOD=zero means conditional poll
(step 3); anything else means unconditional poll (step 2);

[(Note: the operating system shall set HNDLOD zero at power—aon
and system reset. If the application does not modify HNDLOD,
conditional poll will always be selected by any OPEN.]

2. If unconditional poll is selected, a Type 4 Poll (see below)
occurs. If no peripheral answers, step 7 is performed. If a
peripheral answers, its 4-byte answer is returned by CIO ¢to
the application in DVSTAT through DVSTAT+3 (O2EA through O2ED
hex) (proceed to step 6&);

3. If conditional poll is specified, CIO checks for the ‘device in
the handler table. If an entry is found, the handler already
exists and normal open processing continues. Proceed to step
Si '

4. If conditional poll is specffied and no handler entry is
- found, a Type 4 Poll is issuved. Everything proceeds from here
as in step 2; ' ' ' -

NI |

S. If no poll was issued, this fact is flagged to the calling
application by setting DVSTAT and DVSTAT+1 (0O2EA and O2EB hex),
to zero. I/0 status returned indicates either successful OPEN,
or open failure for any of the standard set of possible
Teasons; : : ' ‘

Lakls

6. If a poll was issved and successful, the IOCB is
"provisionally” opened. This includes all normal CIO OPEN
processing, but includes none of the handler open processing
since the handler is not loaded at this time. The IOCB is
marked "provisionally"” open in the following ways:

o The handler table pointer ICHID is set to 7F (hex);

Page 18

0 The put address ICPTL, ICPTH is set p01nt1ng to the“' 5.
0S-resident applxcatzon loader routine; S

0 ICAX3 contains the device name_for the handler loader table;

0 ICAX4 contains the device serial address for loading.

Normal status (01) is returned following a provisional open,
and DVSTAT through DVSTAT+4 (0O2EA through O2ED hex) contain
information needed by the application to provide RAM for the
handler load which will follow (see below};

7. If a poll was issued and no device answered, the IOCB is not
opened and error 130, Non—-existent Device, is returned.

The OS flag HNDLOD (O2EY hex) shall be set to zero each time CIO

Teturns to the application, regardless of what call was made or the
results of the call.

Page 19

ITUI0T YT 2N

LTI 1%

- T
-

The Type 4 Poll»shall be a serial port command ét%bﬁfufedjé}i

follows:

0 Device address of 4F hex (peripherals looking for Type 4 Poll
may ignore the device address and look only for the poll comman
‘@’; however, the device address will always be 4F hex and the
peripheral may check this);

o Command is ‘@’ (40 hex) (peripherals looking for this poll will
always look for the ‘@’ command});

o0 Auxl contains the device name, which is an ATASCII upper—case
letter (range 41 hex through 5A hex) (the peripheral must be
assigned that device name in order to legally answer the poll);

0 Aux2 contains the device number, which is an ATASCII digit
(range ATASCII 1'through ?, 31 hex through 39 hex) (the
peripheral may optionally use this information in deciding
whether or not to answer the poll); :

o Standard command checksum (peripheral checks this).

This poll differs from the Type 3 Poll in that the device name and
number is included in the poll. Therefore the peripheral need not
count retries of the Type 4 Poll and should answer the Poll as soon as
the Poll command is recognized. There is no limitation on answering
the Type 4 Poll; the peripheral should answer its Type 4 Poll each
time the computer issues this Poll.

The peripheral response to a Type 4 Poll is the same as for the
Type 3 Poll (section 3.2.1.1). The four Tesponse bytes shall .be placed
in DVSTAT through DVSTAT+3 (O2EA through O2ED hex).

I WTTTRN ey

\
f g
'h‘ml‘

Page 20

3.2.2.2 LOAD, RELOCATION, INITIALIZATIDN. USE

Following a "provisional" open the application must check the
DVSTAT bytes to determine the need to allocate an area for the handler
which is to be loaded. The application must set aside an area, on an
even address, at least as large as the handler size specified in
DVSTAT and DVSTAT+1 (0O2EA and O2EB hex). Then the application must
place the address of this area in DVSTAT+2 and DVSTAT+3 (02EC and OZ2EIL
hex) and the length of the area in DVSTAT and DVSTAT+1 (02EA and O2EB
hex). (The application may allocate the minimum area by leaving
DVSTAT and DVSTAT+1 alone.) If the even starting boundary cannot be
assured by the application, it must allocate one more byte than it
reports in DVSTAT/DVSTAT+1i. The application signals the completion of
these steps by setting the flag HNDLOD (O2E9 hex) nonzero.

The handler load shall occur avtomatically when the application
calls CIO to perform any I/0 operation except CLOSE via the
"provisionally* open IOCB, when HNDLOD is nonzero (the CLOSE command
shall simply close the IOCB without loading the handler). The steps
taken by CIO shall be as follows:

1. The IOCB is checked to see is it is provisionally open. If it
is not, normal I/0 processing continues;

2. I# the IOCB is provisionally open: the flag HNDLOD is checked.
If the flag is zero, error 130, Non—-existent Device, is
returned;

3. If the IOCB is provisionally open and HNDLOD is nonzero. the
handler is loaded (using the procedure of section 3.2.1.2) and
linked (using the procedure of section 3.2.1.3). Prior to the
load, the load address in DVSTAT+2 & DVSTAT+3 is forced even.
The initialization process is called with the MEMLO parameter
off, indicating that the handler size is not added to MEMLO;

4. If the loading or initialization fails, the IOCB is closed and
error 130, Non—existent Device, is returned;

'
(R 299

9. If the loading and initialization succeeds, the IOCB is

modified to indicate it is properly opened: :

o Handler ID, ICHID, is set to point to the proper handler &
table entry. If the entry is not found., error 130, -

) Non—existent Device, is returned. and the IOCB is closed; =

o Normal CIO OPEN processing is performed, thus filling the
I0CB properly, including the put address ICPTL, ICPTH which -

is set to point to the handler put—byte entry. Additionally, -
the handler OPEN entry point is called by CIO.

6. CIDO completes processing of the I/0 command originally called
‘by the application. : i

Page 21

(Note: it is extremely important that the applicatiﬁﬁ:nqﬁ;mqyifq
the handler once it has been loaded. Users of high-level languages
such as BASIC or PASCAL must remain aware of how the language
environment, particularly the language memory useage, may affect the
handler. DOS 2 users must be aware thay'the DUP overlays memory whicl
could contain I/0 handlers. CSYSTEM. RESET] "uses" loaded handlers wvi.
the process of reinitialization; therefore, system reset processing
could fail if any loaded handlers have been modified. Also note that
unpredictable results will occur should the handler be loaded more
than once by an application.]

ol ve i r i

;eflli

Page 22

3.2.3 SYSTEM RESET (WARM START) REINITIALIZATION

This section describes the sequence of events taken by the -
operating system during system reset (warm start) reinitialization.
This consists of actions which have existed in the 400/800 revision B
operating system plus new operations which are the SWEET16
enhancements being described in this document. Only that degree of
detail needed here is included.

1.

8.

The OS shall set the warm start flag WARMST (0008 hex) to FF
hex:

Certain variables iﬁ the 0S database are cleared to zero. RAM
outside the 0S database is left untouched. In particvular, the
handler table and all IOCB‘s shall be zeroed;

MEMLO (O2E7 and- O2EB8 hex) shall be set to 0700 hex; -

0S resident handlers shall be initialized and entered into the
handler table;

The application cartridge “"A" shall be initialized, if
present;

Cassette or disk initialization shall occur (CASINI or
DOSINI). At this time, the DOS updates MEMLO by adding its -
size, and any handlers within the DOS are initialized and
entered into the handler table;

Upon return from the cassette-booted or disk—booted
reinitialization, the operating system shall reinitialize all
handlers which have been loaded into RAM. The procedure is
described in detail below; ‘

The OS shall start the cartridge or jump through DOSVEC.

To per?orm the initialization of loaded handlers (step 8 above).

the operating system shall proceed as follows:

1.

4k

The internal pointer CHLINK is checked to see if any handlers
have been loaded. This pointer is null (zero) if there are no:

KL

loaded handlers, or it points to the linkage table of the =
first such handler; .
If a loaded handler exists, its linkage table checksum is o

calculated and checked. If the sum is not two’s—complement
zero, the handler has been destroyed and this portion of the
OS initialization terminates (no error is reported); =

If the linkage table checksum 'is OK, the handler is re-linked
and re—initialized according to the procedure of steps 2
through & of section 3.2.1.3; the MEMLO parameter is set on so
that the handler size will be added to MEMLO;

Page 23

If an error occurs while re-initializing the héﬁiléfé;tﬁis
portion of OS initialization is terminated (no error is |
Teported); ;

The forward pointer for the handler linkage table chain in
this handler’s linkage table is checked. If it is null
(zero), this phase of initialization is complete. If it point:
to another handler, steps 2 through S are repeated for each
handler in the chain.

-

wb ib

NT IR

it i il."‘.‘

Page 24

3. 2. 4 SUBROUTINE INTERFACES

Three subroutines are added to aid the initialization proce%s for

- loaded handlers.

The first searches the handler table for an empty

slot and makes the entry for the handler. The second follows the
handler linkagé table chain to remove a handler from the chain. The
third performs initialization processing for a loaded handler.

All three routines are called via JSR to the appropriate entry

vectors (below).

registers.

All parameters are passed through the machine

The entry addresses for these routines shall be as follows:

£489 hex

E48C hex

E48F hex

Handler Entry Routine
Handler Linkage Removal Routine

Handler Initialization Routine

]

il i e

g

A

Page 25

My &3 e~

11ows =257

Parameters for the HANDLER ENTRY ROUTINE are as fo

X: Handler name;

A: High byte of linkage table start address;
Y: Low byte of linkage table start address.

This routine shall search the handler table from start to the
first empty slot. If no empty slot is found (the table is full),
error status is returned to the handler (see below). If a duplicate
handler name is found, a different error is returned (also see below).
If neither of these error occurs, the handler entry is inserted into
the table at the first empty slot.

If the entry was spyccessful made, the Carry bit shall be cleared
on return to the handler.

If the handler table is full, error return shall be indicated by
setting the carry bit. This error is distinguished from the
duplicate~entry error by also setting the Negative bit. The registers
shall be undefined when this return is made. The handler should not
proceed with initialization; see section 3.2.1. 3.

If there is a duplicate handler name in the table, the condition
shall be indicated to the calling handler by returning with Carry set
and Negative clear. In this case the A and Y registers shall be
returned to the handler unchanged from the call, and the X register
shall be an offset, relative to the first byte of the handler table,
pointing to the second byte of the 3-byte table entry where the
matching device name was found. The handler has the choice of
discontinuing initialization, replacing the older handler entry, or
chaining itself in (replacing the old entry but saving it in order to
call the older handler whenever an I/0 call belongs to the older
handler). ‘

Aue

sl

b

4t

e .

Page 226

.

The HANDLER LINKAGE REMOVAL subroutin
parameters: ’

A: High byte of address of handler _linkage table:
Y: Low byte of address of handler linﬁage table.

This subroutine shall search the handler linkage table chain for
the linkage table having the address passed in A and Y. The linkage
table checksums shall be computed and checked along the way to verify
the integrity of the chain. When the proper linkage table is found,
the handler size is checked to determine whether or not the handler
was locaded at MEMLO. If the handler size is nonzero, the handler was
loaded during power up at MEMLO, and it is illegal to remove it. In
this case, the subroutine shall return with the Carry set. Otherwise
the linkage table shall be removed from the chain by copying its
forward chain pointer contents into the forward chain pointer of its
predecessor in the chain. ‘)

If the chain search terminates either by finding the end of the
chain (null pointer) or a bad linkage table, no action is taken and
the Carry bit is returned set to indicate the error. Carry is cleared
to indicate that the table was found and removed. The other registers
are undefined upon return.

This subroutine is supplied to allow an application to request
removal of a previously loaded handler when it is no longer needed or
when the RAM must be reclaimed. It is suggested that the handler
CLOSE routine check the flag HNDLOD (O2E9 hex); it may be set nonzero
by the application before CLOSE to indicate that the application
wishes the handler unloaded. The handler is responsible for removing
itself when unloading is requested: the handler table entry should be
deleted, and the linkage-table must be removed from the chain. The
IOCB byte ICHID may be used to find the handler table entry, and this
subroutine is used to remove the link from the chain. [Note: The 0OS
variable COLDST shall be interrogated by this routine to determine
when the caller is the operating system itself at cold start time. Inm
this case, the handler shall be unlinked even though it is loaded at =
MEMLO. 3 _ ‘ 4

Note that the handler must NOT remove itself if it has been loadeé
at MEMLO. This is the reason that this subroutine checks the handler ’

-

size for application—loaded handlers. I# the handler receives ervor

=3

status from this subroutine, it should NOT remove itself from the -
system (except it is still permissible to remove the handler table

entry). '

Handler table removal is done by zeroing the device name byte in
the handler table. :

Page 27

An INITIALIZATION subroutine entry point is includedffﬁftﬁéfos to
provide the handler initialization function to be easily performed

when handlers are loaded by a non-0S routine, for example by
AUTORUN. SYS.

The INITIALIZATION subroutine performs all the tasks (steps 1-6)

for initialization described in section 3.2.1.3. This routine require
the following parameters:

A: High byte of address of handler linkage table;
Y: Low byte of address of handler linkage table.

In addition, the Carry bit must be set by the caller to indicate
whether the handler size should be added to MEMLO: Carry set on meant
the subroutine shall allow the adding of the handler size to MEMLO.

Carry clear means the handler size shall be zeroed. thus suppressing
its addition to MEMLQ.

This subroutine shall return to its caller with Carry set if

linking error occurred (and the linking is not performed). Carry shall
be clear if linking was successful.

B Y ST EOLAY N

} ik,

(S

Page 28

3.3

PERFORMANCE REQUIREMENTS

There are no performance Tequirements.

DESIGN REQUIREMENTS

Does not apply.

PACKAGING REQUIREMENTS

There are no packaging requirements.

SPECIAL REGQUIREMENTS

There are no special requirements.

APPLICABLE STANDARDS

There are no applicable standards.

v -

iR RO T LI T

Fﬂh

AP

Page 29

	atarimuseum:

