2600/7800 DEVELOPMENT KIT

CARE AND FEEDING INSTRUCTIONS

A full, complete 2600/7800 development system includes the following:
HARDWARE:

520ST or 1040ST COMPUTER (or Mega ST))

SH204 HARD DISK

SF354 or SF314 FLOPPY DISK (or equivalent)
SM124 or SC1224 MONITOR (or equivalent)

7800 GAME MACHINE

TRANSFER CABLE

DEVELOPMENT RAM CARTRIDGE

TELEVISION (not furnished by Atari)

EPROM CARTRIDGE (for appropriate game system)

SOFTWARE:

DEVELOPMENT KIT DISK:
4LOCOL.S (Sample source code for 40-column text display)
ASM.BAT (Submit file for the batch utility)
BATCH.TTP (Batch utility: executes programs in submit file)
CONV65.PRG (Converts .0 file to S-record format ".SR")
DLOAD.TTP (Downloads code to the 7800 and acts as terminal)
K.TTP ("Kermit" - for inter-computer communication) :
MAC.PRG (cross-assembler)
MARIA.S (Recommended 7800 equates file)
STELLA.S (Recommended 2600 equates file)
ME.TTP (Micro-Emacs editor)
WAIT.PRG (Allows messages to remain on screen until <CR>)
HARD DISK BOOT DISK (comes with hard disk drive)
DS5027 NEOCHROME (ST graphics program)
SAMPLE SOURCE CODE (for the appropriate game system)

DOCUMENTATION FOR 2600 AND 7800 DEVELOPMENT:

ASSEMBLER MANUAL

EDITOR MANUAL

STELLA (2600) PROGRAMMER'S GUIDE

2600 GAME STANDARDS AND PROCEDURES

7800 SUPER CART SPEC

7800 PROGRAMMING GUIDE

SARA PROGRAAMING INSTRUCTIONS

MOTOROLA S RECORDS FORMAT

7800 GAME STANDARDS AND PROCEDURES

NOTE FREQUENCIES FOR ATARI 2600/7800 SOUND SYSTEM

page 1

7800 SCHEMATIC
2600 SCHEMATIC
DESCRIPTION OF 7800 "PRO" DEVELOPMENT SYSTEM UPGRADE (debugger commands)

.. .AND ANY OTHER DOCUMENTS WHICH MAY BE GENERATED FROM TIME TO TIME.

SETTING UP THE DEVELOPMENT SYSTEM:

Set up the ST computer per its instructions.

Connect standard 7800 to power supply, attach 7800 to TV set.

Attach standard parallel transfer cable to printer port of ST and to the
25-pin D connector on the development system cartridge.

Put the development system cartridge in the cartridge port
(chips to the rear) and power-up the 7800.

Run DLOAD.TTP on the ST and if properly connected, you will see the
sign-on message from the development system cartridge on your ST
screen (another message is displayed on the TV screen).

And off you go!

SOME INFORMATION THAT WAS NEVER GIVEN IN ANY OF THE OTHER
DOCUMENTATION:

How to use the right and left joystick buttons (7800 games only):
Initialize SWCHB with the following 4 instructions:

LDA #814
STA CTLSWB
LDA #0

STA SWCHB

Read the fire buttons from:

INPTO - player O, right button (d47=1 if pushed)
INPT1 - player O, left button (d7=1 if pushed)
INPTZ2 - player 1, right button (d7=1 if pushed)

page 2

INPT3 - player 1, left button (d7=1 if pushed)

How to program for the 2600 on the 7800 Development System:
1. A 2600 "lock-in" must be performed before anything else
and is accomplished by these 2 instructions:

LDA #8FD
STA $08

2. Six 4k blocks of memory space ("banks" on the cartridge) are
available for use by 2600 game developers. They are:
5000-5FFF
7000-7FFF
9000-9FFF
BOOO-BFFF
DOOO-DFFF
FOOO-FFFF

Since 2600 cartridges have 1,2,U, or 8 banks of Uk each, only
cartridges of up to 4 banks in size may be developed with this system.
8 bank cartridges will need the dedicated 2600 development system when
it comes out. It is recommended that the FOOO-FFFF bank not be used
during game development {except to store hardware vectors and to
execute the 2600 lock-in described above) since 122 bytes at FF80-FFF9
are dedicated to 7800 encription signatures & the development system
requires this area for system code. FOOO-FF7F may be used, but it
cannot be "packed" full of code as would be possible in the EPROM
cartridge. Also, keep in mind that the development system does not
emulate bank switching or SARA ram accesses precisely. Since the 7800
development system was not expressly designed to run in 2600 mode,
some problems have been observed when it is used in 2600 mode. Most
development system boards are tested to see how they perform in 2600
mode. Some work fine but others only allow load & go with no debugger
communications once 2600 mode has been locked-in. If the debugger
fails to work once the 2600 program has been started (either no
communications or 7?7 responses to legitimate debugger commands), you
may have a board or base-unit (or combination thereof) which cannot
tolerate 2600 mode. Try a different base-unit or different
development system cart.

Summary of differences between dev system as 2600 & 2600 EPROM cartridge:

Development system as 2600: EPROM cartridge:

1. Code in bank FOOO-FFFF Bank FOO0-FFFF may be used in its
must not reside at FF80-FFF9 entirety.

2. Bank switching timing can Bank switching must be used for
be simulated but other bank access to other 4k blocks. Bank O
switching side-effects cannot code cannot access bank 1 data.

page 3

be directly observed. For When attempted, this is usually

example, code executing from quite evident as a bug.
bank O can access data from
bank 1.
3. SARA ram accesses can be SARA ram must be read at FO80-FOFF
simulated provided that and written to at FOOO-FO7F.

read & write accesses
are in the same 128 byte

block.

4. The two instruction 2600 The two instruction 2600 lock-in
lock-in code described above code is not necessary and uses
must preceed all other code. 4 pytes of ROM that could be used

otherwise.

Bank switching is used for 2600 cartridges larger than 4K. When it
was first designed (in the stone age of 1977), the 2600 base-unit
brought only enough address lines out to the cartridge to address

Lk. Now that ROM has become so cheap, 2600 Bank switching necessary
to address larger carts. This is accomplished by reading & "magic"
location. Normally, a LDA ABSOLUTE is executed followed by a JMP
ABSOLUTE. A copy of these two instructions is found at the same
offset in both the bank being switched to and the bank being switched
from. In addition, at power-up, the programmer cannot assume which
bank will get control first. All banks must vector RESET thru proper
bank switching code to the bank with the start-up code. The magic
addresses to be read for bank switching purposes (when applicable)
are:

cart size: 1 bank 2 bank 4 bank 8 bank
none $FFF8 $FFF6 $FFF2 lowest bank #
$FFF9 $FFF7 $FFF3
$FFF8 $FFF4
$FFFS $FFF5 v
$FFFO highest bank #
$FFF7
$FFF8
$FFFO

For more details, see sample source code.

Available PAL Colors: (2600}:
0,2,4,5,6,7,A,B,C,D Lums are the same

Conversions

page 4

0dd or even numbered scan lines may alter the colors to black
and white. (2600 PAL conversion)

Some previously released 7800 cartridges used additional RAM provided on
the cartridge itself. ‘This has become prohibitively expensive and is
not allowed for future game development. Exceptions will be made only
if cleared in writing by Atari management first.

when sending EPROMS to Atari, the following information should be
provided (on a 1/2" x 3/4" label that does not cover up the
printing on the EPROM):

GAME NAME (including system - may be abbreviated)

DATE

CHECKSUM

BANK #

For example: 7800 BALLBL. 2600 SOCC
9/28/87 9/28/87
E2D8 300B HI
BANKE7

The preferred form of game milestone submission to Atari is sending
the source code on floppy disk together with the .0 files generated by
that source. A .BAT file containing the command line for DLOAD.TTF
would be a convenience as well. Source code is manditory for final
submissions before game release.

1f there are any gquestions regarding the use of the software or
hardware, call John Feagans at Atari: (408) 745-4923. He
and engineer Jose *Beam-Me-Up" Valdes are also available
through CompuServe for 24-hour Q&A service (see CompuServe
booklet for details).

Dave Staugas may also be reached for questions at (408) 745-2267.

page 5

Description of the Atari 7800 "Pro" Developwent System ade
Document revision date: 13-July-

New features (vs. previous development system):

-

Downloads proceed up to 6 times faster than the previous development
system.

Programs to download need not be converted to .SR (S-records) format

via the CONV65.PRG. Object files straight from the assembler (MAC.PRG .0
files) may be used directly, saving the CONV65.PRG step and increasing
download speeds by a factor of 2. .0 files must be used if symbolic
references are desired with the debugger.

An on-board symbolic debugger is included with trace, go with break-
point, list (disassembly), set (change memory), register change, and dump
memory commands currently available.

Communications between ST and 7800 base unit are accomplished via a new
bi-directional parallel 1/0 port on the development cartridge making the
joystick ports free on the base unit for, of all things, joysticks!

Any production 7800 base unit may be used with the development system
ncartridge” (no need to modify the base-unit ROM) since the development
system cartridge ROM is encrypted to "pass" the encryption test of the base
unit.

Programs (whether single or multiple bank) may be loaded without use of
a Load/Run switch since the develpment system cartridge manages memory
automatically during download.

New board has been designed especially for development system use and
will (hopefully) prove more reliable than the previous kludge-board.

Checksum is computed for S-records after reading data back from RAM
rather than simply adding up the date as received and then storing to RAM
as was done with the previous system. A similiar method is used with .0

files except a 16-bit checksum 1is used to improve reliability detection.

Items you should have with this new Development System Upgrade:

1. Single board (large) cartridge with parallel port.
2. Parallel ribbon cable.

3. Diskette with DLOAD.TTP program.

Using the Development System Upgrade:

To use the Atari 7800 "Pro" development system, simply plug the
supplied 7800 development card into any 7800 base unit and connect the
parallel cable between your ST computer's printer port and the 7800
development card. Power-up the base unit and wait about 2 seconds ("ATARI"
& Fuji is displayed on TV screen while decryption is performed). The blue
screen with the 7800 sign-on message should now be displayed. If your base
unit has the old transfer program ROM, you will need to depress the 7800
reset button to start the new debug cartridge ROM.

Now, run DLOAD.TTP on the ST. If an .SR file or .0 file is to be
downloaded, type it's name on the command line when invoking DLOAD.TTP. If
the file type is omitted, the program will first look for an .0 file on the
current directory. If an .0 is not found, &n attempt will be made to load
an .SR file. Multiple files of either type may be listed on the command
line separated by spaces or commas, and they will be loaded in the order
they appear there. Only .0 files contain symbols that can be used with the
symbolic debugger so this file type is preferrable when debugging is to be
performed. The type of download to be performed is determined by the file-
type (.0 or .SR) so be sure that the format of each file is identified by
its proper .0 or .SR.

For game programs that do not require multiple banks, bank zero will
be used automatically and no relocating of S-records is necessary.
Multiple bank programs will still require a separate assembly for each bank
as with the old development system but no relocating is necessary. If you
are loading .0 files (w/symbols), the following two lines of "code" should
be included in each source file (bank #3 example is shown):

BANKNBR
DUMMY

3 :this equate tells DLOAD.TTP to load in bank #3
BANKNER

Due to & quirk of MADMAC (the Atari cross-assembler), the symbol
BANKNBR will not be included in the .0 file symbol table unless it is used
as well as being defined. So, use it in another dummy eqguate to force it's
inclusion into the symbol table. Another quirk of MADMAC that I have
observed; symbols starting with upper-case "L" are not included in the .0
file! Still another bug observed in MADMAC: If an entire page of 6502
memory is initialized to 00's, the assembler omits the page in the .0 file
entirely. The symbol BANKNBR (must be all upper-case) should not be used in
any other way. If this symbol is not found, bank #0 will be assumed. If
you prefer to use S-records, the way to switch banks is via a new S-record
type that is used expressly for bank switching. A summary of the three S5S-
record types understood by the development system is &s follows (blank
spaces are added for clarity and should not be present in actual S-record):

Example S-record description

S 1 23 8000 78 56 09 ... TA S Starting byte of every S-record
1 Record type 1 for download data
23 Byte count in hex (add 3 to
include addr & checksum)
8000 Starting load address, this record

78
56
09 etc. is 32 bytes of dload data

74 is the checksum byte when added
to the data bytes, 2 address
bytes and the byte count byte
should equal $FF (ignoring
overflo).

S 305 S Starting byte of every S-record
3 Record type 3 for switching banks
05 A switch to bank #5 is performed.
(no checksum needed)

S 9 S Starting byte of every S-record
9 Record type 9 for terminating
this download.
(This record is automatically
appended after each download)

Once the file(s) have downloaded, DLOAD.TTP becomes & terminal of sorts
that allows the programmer to inspect 7800 system RAM/ROM and debug his
program. The prompt is a tilde ("~") indicating the debugger is ready to
receive commands from the ST keyboard. The commands for this debugger are
modeled after those of SID.PRG which comes with the ST development system.

Some of the commands accept addresses or data as arguments. Any such
address or data may be expressed in the following 3 ways:

As a hex constant (examples--FCB2 LOA AB).

As a hex constant preceeded by a bank number & colon.
The bank number (0-7) is only meaningful when applied to
addresses in the 8000-BFFF range where bank switching can
occur. (examples--0:9A04 5:8000 2:BADD)

As a symbol. A symbol must be preceeded by a period (e.g.
" start") and must be found in the programmers symbol table
from the .0 file(s) that were downloaded.
(examples-- .start .mein .loop)

Commands are "sent" when the <cr> is entered and may be editted with
backspace before that time. If a command calls for long type-out, the user
may suspend/resume the type-out with cntrl-S/cntrl-Q (xon/xoff) sequences.
Striking any other key will cancel a long type-out.

Commands currently available:

“glxxxx][. yyyy]

Go (execute) starting from current PC or at optional xxxx eddress until
optional yyyy breakpoint is reached.

x[pc | A | x| Y]|Ss]|B]|P]]

eXamine and change registers command. If the optional register name 1S
omitted, the contents of all registers are displayed. If a register name
is given, that register alone is displayed and the user may input & change
to the contents of that register. "PC" is a 16 bit value, while
"AMLOTX","Y","S", and "P" are 8-bit values. "B" is the current bank number
and should be in the range 0-7.

“d[xxxx][,yyyy]

Dump memory starting from last dumped address or optional xxxx address
until opticnal yyyy address.

“1[xxxx][.yvyy]

List (disassemble) memory starting from last listed address or optional
xxxx address until optional yyyy address.

“t[w | xxxx]

Trace (execute) one instruction starting from current PC or if optional
count xxxx is entered, trace XxXxX program instructions. If the instruction
to trace is a JSR, ~tw will execute the entire routine called by the JSE
and break upon return.

SXXXX

Set (change) memory command. The address xxxx to set must be provided.

The current contents of the memory address indicated is displayed and the
user may enter a new value or skip to the next address with a <cr>. Tco
exit this mode, type a period then <cr>.

Example: remarks:
~sD000 change memory starting at DOOO
DOOO E2 42 contents E2 changed to 42
D001 78 <cr> contents 78 left alone
D002 60 20 contents 60 changed to 20
D003 CA .<cr? exit x command
“z

Shut-up sound command. When breaking 1into an executing program, the sound
latches may be left in an annoying state. The sounds of silence may be had
with the z command. Zeros are written to all six sound registers.

n

-n

Enable or disable Display List NMI processing while in "system" mode. A
minus sign followed by "n" will force any DLI's that occur while the
debugger is processing user commands to merely RTI with no further
processing. "n" without the minus enables DLI's in system mode but with 71
cycles of overhead added. When executing the users program using the Go
command, the state of this flag has no effect--DLI's will execute normally
with no added overhead.

Additional notes on debugger use:

If it is desired to break into an executing program on the 7800 development
system, the user need merely type cntrl-C at the ST keyboard. An IRQ is
generated and the program's state can be examined. To resume, simply re-
start with the "G" command. The IRQ will not work however if the user's
program executes an SEI instruction (set interrupt disable). Change all
SEI's to CLI's while debugging, then when it's time to burn EPROM's, change
+hem back to SEI. Since the 7800 target system normally has no external
IRQ connected, it probably won't hurt to run your progran with IRQ enabled
anyway. When a running game has been broken into in this way, the main
program has stopped, but DLI's will continue to be processed. However, 71
cycles of overhead is added to the DLI routine which may be unacceptable
for some aspplications. If this is the case, use the -n command to stop
display list processing (DLI vector will just point to an RTI). To return
to the ST's desktop (or command line) while a downloaded game is running,
use the <esc> key. This is the way to exit DLOAD.TTP at any time.

when invoking DLOAD.TTP, the command line may include (in addition to
the above described list of files to download) the 1st debugger command to
be issued after downloading has finished. In this way, it is possible to
"load & go" by automaticaly issuing the "g" command. This initial comand
should be preceeded by a minus "-" and should be the last item on the
command line. An example of the DLOAD.TTP command line using this feature:

DLOAD.TTP fileQ filel file2 -g

Occassionally, communications seems to hang up between ST and 7800
development system. This can often be broken thru by use of cntrl-C. As
with any alpha release software, bugs and other annoyances will be present
in this, the first release of the Atari 7800 Pro Development System
Upgrade, which you will probably discover for yourself. I would like to
hear about any problems you may be having or requests for features not
found here. You may contact me, Dave Staugas, at [4O8] 745-2267.

Now let's get going and create 7800 games that eat Nintendo alive!

7800 SUPER CART.

A One Megabit ROM in the 7800 super cart will be organized as
one fixed 16K x 8 space ($C0O00 to $FFFF) and seven 16K x B banked
elots ($BOOO to $BFFF). Changing banks is achieved by writing to
any location from $8000 to BFFF with the appropriate bank number.

The Bank data should be organized as follows:
Bank Data (binary)

000
001
010
o111
100
101
110
111 (same as fixed bank at $COO0O-$FFFF)

N b WK -0

The 7800 Super Cart. ics designed for various sizes of ROMs
arnd will support an BK x 8 SRAM. Below is a jumper chart showing
211 supported configurations of the cartridge:

IUl Description | U4 Options Iwl w2 i w3 wa WS iwb w7 wBlUSIUSIUZI
IS12k ROM/EPROM 1Empty == 4+]l=— 4t l=— === =it | ++ [++]
lcs=low,bankswitchedl1&6k/64k SRAM| —— | +4+ | —=14++]==]==]==1——l++|++|++]
| 128K ROM |—— 4+ | == |+ == | ==l —— ==+t |+t | ++]
| 1024k ROM/EFPROM IEmpty |—— |44l —— == |+ == == ==+t i++|++]
lcs=low,bankswitched|16k/64k SRAMI —— | +#4 | —— | == |#+ | == |——|—— | ++i++ | ++]
] 1128k ROM |——[+4 | == == |t == | = | —— |+t | 4F |+]
| 256k ROM JEmpty Ixx l=——l——loaalaal+trl——|++l=—|——i—"—]|
lce=high,not banked |16k/64k SRAMI——|——l——laalagxi++l——l++|==|++|++]|
| 1128k ROM cs0l——l-=l-—loalaal++l=—j++]|——i++i++]
I 1128k ROM cel |l——Ixx|++lgalgal+ti——l++|——|—=]++]
| 512k ROM (4Bk net) | I I | | | i | | i } i i
ilcs=low,not banked IEmpty J44 |44 | == |44 | == == |+t |4 | ===]++]
| 256k ROM/EPROM IEmpty jm— |4+ | ==+t == | == | == |+t —— i+ | =]
lce=low,not banked 11&6k/64k QBAMI——I++I—-|++I——l—-l-—l++1--|++l++l
| 1128k RDM_£§01——l++|——i++l-—l-—l—-l++1--l++|++I
! 1128k ROM csll not supported I
-— open ++ connected

x» don’t care ax TBD

7800 Cart. Memory Map

$4000

RAM
$6000 SSFFF
RAM |
ROM Bamk
Bank U
_/""

$CDUDF-_4 $BFFF

Fixed
ROM

$FFFF

MOTOROLA "S" RECORDS

e MOTOROLA EXORCISER FORMAT, CODE &

Motorola data files may begin with a sign-on record,
which is inftiated by the code SO. Valid data records stan
with an 8-character prefix and end with a 2-character suffix.
Figure A-11 demonstrates 8 series of valid Motorola data
records.

Each dats record begins with the start characters “S1";
the programmer will ignore all earlier characters. The third

and fourth characters reprasent the byte count, which
expresses the number of data, address sand sum-check bytes
in the record. The address of the first data byte in the
record is expressed by the last 4 characters of the prefix.
Data bytes foliow, each represented by 2 hexadecimal
characters. The number of date bytes occurring must be 3
Jess than the byte count. The suffix is a 2-character
checksum.

INPUT

DATA RECORD

START CHARACTERS

BC = Byte Count The number of data bytes plus 3 {1 fo
checksum and 2 for acdress) in hexadecimal nptation

AAAA * Address of first data byte 1n record AAAA in
hex adec:mal notation only

Hid = One data byte in hexapecimal notation

IITIIX [Pb)b N @ —m(

CC = Checkium One's compiement of bunaty summation
o! prececing brytes in record (including byte count, agdress,

e Ve
c;
[and data bytes) in hexadecimal notetior
1 This space can be used for line leed, cartinge return o
commenti
s
1
LEGEND)
SO
S
BC

(Beginning of next record)

= Dplions! Start-ol-File Record
= Start Chavacters

= Byte Count
([Data Bytws/Recoid) + 3)
AABA = Adorewu of First Dawa Byte
HH = Two Hexadecima! Digits (0-8, A-F)
cC = Checksum of Record (one byte)

ne

SiGN ON RECORD (OPTIONALY

S@ = stan charactets of mgn-on recorc Except for s1an characters
S8 record has same format #$ asta record

END OF FiLE RECORD

2 START CHARACTERS

E Byte Count BC = 00 n End-of-Fiie Record
_—

A

n Addres:

&

A

<

c Chechsum
OUTPUT

NOTES

1) Number of byles pet record is variable See Table 3.1,

21 Each line ends wmath noAptinting line teec. carriage return
and nully

3} Sign-on record may precede data

2 Hex charscters = 1 byte Data Records

S'IBCMAAHHHHHHHHHHQT{HHHHHHFIHKHHHHHHHHHHHCC
S1BCAAAAHHHHHHHHHHHHHHHHHHHHKMHHMHHHHHHHHCC
SI1BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
S1BCAAAAHHHHHHHHHHHHHHHHHHHHRHHHHHHRHHAKCC
SPBCAAAACC

Figure A-11. Specifications for Motorola Data Files

SesspssRBROTRID NOTE FREQUENC'ES FOR ATARI memUNDSYSTEM SsssBRROBTREERE

.l."l.'llolll.lll'lllll!l.l‘ll..Il"lllll'lll..ll'l.llll'llllll..ll.l.l'."‘l"lllllll...‘ll.&t‘!‘l'[l.lll.!

LI DU S, N N NN SN JUN NN, FN N S AU i

NOT.ES’ | 04,05 | 0C|.'|.Ol').l-f . i. 01 .. | 6790AHI OFH I 0203 |- 08
10iicrceererreessensrensaens I i | I i
B O Boo_c-io4) | {
B flat 9. J | 1
A 9 1SO80CPS......... | | 1
G sharp 9o | i
(o3 T I 1 b
F osharp 9. i | i
2 T i i |
E Geeererrrrerrerernmeeee | | f
1 P I J | LI
LS S Jl ‘ i
sharp 9. |
POk | | i
B eeessana $01_-052) | i
flat 8o | i
8 7040 CPS | | _
sharp 8. | I S
| | |
sharp 8. | J i
- SO J | .
§o0_(-040) .
}
|

O)WUJ“)QOMI'“'“'“OO)CBWWGUW
oo

I
i
| L
I |-
803 (0260 __
flat 7o i I l__
73520CPS........... [I i
sharp 7o | __
S SO §a_-004r | _
U F sharp 7eeeeceeeend | |
2 S | | —
VE T 05010 1801_(-020) _
, E fla T eeeeeresreeareeas J | |
D 7. — [I
i C sharp7 LGS06_(+025) |
>g 7 S, | [§00_(0000) I
B 6.......... LB07_(013 | | |
B flat 6, i | | |
" A 61760 CPS.......... B0S_(015) B02_(0i6) | I
{ G osharp e | | | i
R - YO 8o _002) | | |
F sharp b BOA_(-053) | | |
- F - i | _ |
E §03_(<10 I l ' f
E | | ,_I | |
D | . | i | |
' C B04_ 0i0) | f v I
:g [$01_(0000) I) I
i . I 800_(-025 | 1 |
B | __ | | _ |
A 8§05 (008 | | | — i
-G . | | | | |
G | I | | |
F sharp 5 0 _(+007) | i I | |
F S Bls (+015)816_(-016) |__ $02_(-06t | | I I
E S L1817 _(005) 807 _(-DL | i I I
E flil 5.rrororrorrosroone 518_(4-006) |)] | 1
D 5eererereneereened ISIAC-006) I$08_(-000)] ! | ! |
C sharp 5 LS 1B_(+006) | I | | | |
C 5 $1D_(0000) B5_(0000) $03_(0000) | ! 1 __

Jtll!ulltnnllunn'alul-Illllll'l!!lllllltilll!l'.l‘lllllll!ll!.lll.ll'l.!-u-s.l.:Iu'I-u-'l.l!lll!-..llll!‘ll!

NOTES | | OCH.ODH | 01 'I 6,7.9.0AH | OFH | 0203 | 08 |

Bd i ISIF_-035) | | 1$01_(+013) | | | |

B flatd.ennd B0A_(+009) | |] | | !

A 4 440CPS | $0B_(-004) | | | | | |

| §04_(+003) | | | | |

BOC_(+010) I | | I | |

$OD_(+003) [| | | | {

I$OE_(-001) 1$05_(-001) | | | | |

I$OF _(-002) | 1$02_(+008) [$00_(+008) | | |

$10_(-004) | | | | | |

811_(-003) 1$06_(+006) | | | | |

1$12_(-002) | | | | |

1$13_(-000) $07_t0000) | | (| |

$14_(+003 $03_(+007) | | | |

B flat 3. | t$15_(+004) 8_(-001) | | | | |

A 3220CPS.......... [1$17_(-002 | | | | |

G sharp 3o I I$18_(+002) $05_(+002) 1$04_(-005) | | | |

@ TR | I$1A_(-003) | | | |

F sharp 3.] I$1B_(+001) B0A_(+005) | | | | |

[T] 1$1D_t0000) $0B_(0000) | | | | I

EJ.... el I$1F_c-001) 1$0C_(-003) BO5_(+004) §01_(+004) | | i

E flat 3.... d | | I | | | |

D 3.] | $0D_(+003) $06_(-002) | i I I

C sharp 3. - | I$OE_(+001) | | I | |

C 3. v | $OF_(0000} | | | | |

PB O i | I$10_(0000) I$07_(+003) | | | |

B fiat 2......... i I $11_(0000) | | J | |

A 2110CPS........ |] $12_(0000) BO8_(+002) I$02_(+002) | | |

G sharp 2o,] | $13_(+001) I$09_(-002) | | | |

G 2. o | $14_(+001) | | I | [

Fosharp 2o, J | $16_(-001) SUA_t00VD) | | | |

F oo J | $17_(0000) | | | | |

E 2. A | 1§18 (+001) KOB_(+002) 1$03_(+002) | |]

I E flat 2o, J [$1A_(0000) $0C_(0000) | | | |

{ D 2 | I$1B_(+001) I$OD_(-001) | | ! |

i C sharp | 1$1D_(0000) ISOE_(-002) [1$04_(-002) | ! |

C 2 | I$1F (0000) ISOE_(+002) [$04_(+002) [$00_(+002) I$00_(-004) |

! | | ISOF_(+002) | | | |

B flat] I I $10_(+001) | | | |

A 1055CPS I | $11_(+001) S05_(+001 | | |

G sharp | |] s13_-00D | | I |

Gl | | $14_(-001) [$06_(-001 | | |

F sharp | | | $15_(0000) | I | |

N | | $16_(+001) 1807_(-001) | [} |

E! [] $17_(+001) [1$07_+001) | | i

E fl I | $19_o000) I$08_-001) | | |

D . [| I$1B_(0000} [$08_(+001) |) |

i C sharp | | | I$1C_0000) 1$09_¢-001> | | |

% l..... : I FIE_uxm) :sm_woon I&n_(ﬂm) Fou-oo:» :
““B 0O

| BT I I | | | | |

"AD [I | | | | l

G shi I | | | | I |

- G 0. [| | | | | |

F osharp O,] | | | | | | |

F O J | i | | | | |

[| I | | | | [|

E fiat O.... J | | | | | | !

D O..... | | I | | I | I

C sharp 0. | | | | | | | !

C O, | | [| | i l |

