_ (A
www.atarimuseum.com Seeond Peuyites

Tinker's Misunderstanding of Logo

Brian Harvey
This is a reply to the article *Lo:0's Limits: Or Which Language Should We Teach?®
by Bob Tinker, published in. volume 6, number ! of Hands On! (the newsletter of
Technical Educution Research Centers). In his article, Tinker recommends the use of
Logo {or young students, fourth through sixth graders. D2ut he suggests thai certain
weaknesses in Logo make it unsuitable for use with older or more advanced students.

The strengths Tinker sees in Logo are turtle graphics and cxtensibility. The
weaknesses he lists are *its use of lists, the assignment statement, and the absence of an
index looping construct.® DBecause of these perccived weaknesses, Tinker thinks that
other languages, like BASIC or Pascal, are better suiiced for use with older students.

Why Respond to Tinker?

The idea that logo is good for little children and not for older peonle is,
unfortunately, 3 common one. Many school districts 2 e srtting un programs in which
Logo is used in the clementary schools, and BASIC is used in the secondary schools.
Therefore, the impo:tance of this issue goes beyond Tinker's peisonal opihions. nis
reply could have lcen presented as a general position pzper without reference to any
specific version of the clementary-only view of Lozo.

Nevertheless, 1 think it’s worthwhile to consider a specific example of this position.
One reason is that Tinker's artizle was detailed and technical in its critique of Logo.
That praiseworthy level of detail may help me avoid a debate in vague generalities.
Another reason, though, is that we Logoites are often in the position of saying *BASIC
rots your mind* and not being believed. It will turn out that the details of Tinker's

views can be cxplained in terms of his own experiences with BASIC.

In responding to Tiuker's ideas, I don’t want to suggest that Logo is the perfect,
universal language for all time, without any flaws. There are certainly new ideas in
" computer science (like the object-oriented programming of Smalltalk} which are not yet
represented in Logo, and there are gaps in the particular implementations of Logo for
current microcomputers. But the things Tinker lists as Logo's weaknesses are actually
- among its greatest strengths! Tinker misunderstands Logo because he does not approach
Logo on its own terms. Instead, just like many young people whose first programming
experience has been in BASIC, Tinker writes BASIC programs in his head (or sometimes
on paper, in the articie) and translitcrates tiem into Logo, line by line. Naturally, the

15}

results are just as ugly zs the original BASIC programs.

Table of Contents

The bulk of Tinker's article discusses :pecific technical questions about the Logo
language. I shall address these questions in this reply, but I must emphasize that such
questions don’t exist without .. context. We have to consider ihe broad (uestion of
programming language design for education on several levels. These levels constitute the
major divisions of this paper: ‘

o A. Edncational Goals First, what educational goals is computer education

supposed to serve? Tinker does not address this question cxpiicitly, hut he
does have ideas about it, which he snms up in the phrase *computer literacy

curriculum.® This general question includes the subordinate but important
specific question of what should be taught at each age level.

o 8. Intollectual Content Second, <vhat is the intelivetual content of computer
programming in general, and of any partieular promramming lzagitame? For
example, one of Tinker's speeific objectiuns to Logo is the way in which it
assigns values to variables. Tinker's discussion is airost entirely in terms of
details of the surface syntax: he objects to Logo’s use of quotation marks znd
colons. But underlying the syntactic form is the substantial issue of how to
understand the naming and binding of variablcs conceptually. We'll Lave to
consider this question and others like it.

¢ C. Tinker's Specific Objertions Finally, within the framework provided by

this understanding of the goals and concepts of computer education, we can
consider the technical details of the syntax of Logo and other languages.
This is the largest section of the paper; it's divided into four parts dealing
with four speciiic points raised by Tinker: '

1. Lists

2. The *Assignment Statement*®

3. Indexing

4. Not Enough Memory

o D. General Remarks In addition to replying to Tinker's paper, I hope to
ptovide a briel critique of Logo and BASIC from the point of view Logo
represents. This section includes a very brief comparison of the two
languages as problem-solving tools, 2 more detailed discussion of one
particular difference betwecn them as an example, and some ideas about
future developments in Logo and Logo-like languages.

3

A. Educational Goals: What Does *Computer Literacy® Mean?

Tinker starts his article with this statement: *There seems to be umanimous
agreement that computer literacy should be an important part of every curriculum from
kindergarten through college and that this should involve not only teaching about
computers but teaching how to program.” There is certainly widespread (though not
unanimous) agreement that computers shonid be used in education somehow or other.
But the agreement is not very decep; there are many different ideas about how and why
computers should be used. Tinker's feeling of unanimity, I think, is largely based on a
general unspoken agreement among educators not to ask embarrassing questions.

When people first started using the phrase *computer literacy,” what they meant
was an awareness of the social role of computers, and some idea of how they work.
Programming, at first, was still thought to be somethinz which oaly 1 few specialists
would learn. Later, the phrase was ticd to job requirement:: since everyone's job will
involve coinputers, according to ihis approach, we have to teach people how to operate
them. Still later, people {like Tinker} extended the idea of *literacy® to mean that every
child should learn the skill of computer programming. But why?

Clearly the decision about what software to use depends on the goal you're after.
For example, if the point of computer programming courses in high ::chool is to get a
head start on the computer programming conrses in college, then it may make scnse to
use Pascal,” which is becoming the favorite language for introductory programming
courses in the colleges. If the point is to prepare students for programming jobs directly
out of high school, tiien perhaps FORTRAN or COBOL is what you want.

The idea behind Logo is different from these. Briefly, it is ihis: In the process of
programming a computer to earry out projects, people can learn poweriul matlematical

ideas.

One example is the idea of debugging. Most computer programmers consider it
normal that a program may not work completely the first time you try it. A program
which is not doing exactly what you wanted is not necessarily a total failure. Instead,
it's considered a mostly okay piece of work, which still needs to be refined. This idea of
reflining one’s work is very different from what usually happens in school. There, you
turn in an assignment once ard for all. It comes back marked up in red ink, with a C+
at the top, and the message you get is that you are a C+ sort of person. Mistakes are
shameful and permanent. To a Logo programmer, a mistake is not only fixable, but may
even be a source of new ideas. *That isn't what I had in mind, but it's prelly neat!* is a

common thing to hear in a Logo center.

More generally, mathematics is a process, not a fixed body of knowledge.
Mathematicians don't spend their time doing exercises in textbooks: they invent new
mathematics. Computer programming is 2 medium in which people who are not experts

can create mathematics.

Another example is the idea of modularity. This means dividing a large problem into
smaller pieces. This idea isn’t new with Logo; it is one of Polya's problem-solving
strategies, for instance. But in Logo, it is expressed in a very concrete form, because a
Logo program is organized as a group of procedures. Each procedure is a smali program
itself, which deals with one aspect of the overall project. Procedures communicate with
one another in a well-defined way, encouraging the programmer to maintain a clean
division between different parts of a problem. Pascal also has s procedural structure;
BASIC does not.

None of these ideas is unique to Logo. In fact, none is even nnique to programming-
they are important precisely because they’re valuable in other contexts al-o. But Logo
differs from other languages in that its design emphasizes these ideas.

The philosophy behind Logo’s use of computers in education is very different from
*computer literacy.® The point is not to teach about computers, or to teach
programming as a skill for its own sake. Instead, the goal is to wuase computer
programming as a tool for learning mathematics, learning autonomy, learning the spirit

of intellectual play.

Not every high school student will end up programming computers later in Jife. Not
every student needs the specific skills of computer programming. But mauy students,
and other people, can benefit from the experience of doing real mathematics by carryins
oui projects using the computer. Why using the computer? Because it is a tool which
provides concrete, manipulable mathematical objects. The Logo turtle is an example.
What is compelling about the turtle is not simply that it produces snazzy pictures, but
that it does so in a mathematically rich way.

B. The Intellectual Content of Computer Programming
Consider this Logo procedure:;
TO LRPOLY :SIZE :LANGLE :RANGLE
FORWARD :SIZE
LEFT :LANGLE
FORWARD :SIZE
RIGHT :RANCLE
LRPOLY :SIZE :LANGLE :RANGLE
END

This procedure is a slight elaboration of the POLY precedure which is often used in Logo
to draw regular polygons. This version draws zigzags, like this:

LRPOLY 70 50 194

LRPOLY 40 70 140 LRPOLY 40 70 140 (stopped partway)

These are pretty pictures. More interestingly, they can encourage mathematical
exploration in several directions. One possibility is to think about symmetry. Why does
one of these figures show sixfold symmetry and another fivefold? Can you find inputs to
LRPOLY which aren’t symmetrical at all?

For people unfamiliar with Logo, it is probably worth a few paragrapks to explain the
structure of this short Logo program. The first line introduces the procedure, indicating
that its name is LEPOLY and that it has three énputs, named SIZE, LANGLE. and RANGLE.
An input is some piece of information which is given to a prceedure when you use it.
For example, the command

LRPOLY 40 79 130
gives the first input the value 40, the second input the value 70, and so on. The names

give the procedure a way to refer to its inputs. In the instructions which make up the
LRPOLY procedure, the notation :SIZE means *the thing stored in the box named SIZE.*
These boxes are variables, but their vaives come from the inputs given to the procedure,
rather than from explicit assignment. This is how thé ides of variable is generaily
introduced in Logo teaching,

It's important that in the title line of the procedure, its inputs are given names; when
the procedure is actually used, the inputs are given values. Inside the definition of the
procedure, the colons used in front of the variable names represent the operation of
evaluation of the variable. These fine points may seem obvious to an experienced
programmer, but they're often a problem for beginners. We'll see later that Logo and
BASIC take very different approaches to helping the student understand these issues.

By the way, the word TO which introduces the deiinition of L2POLY represents the
idea "Here's how fo..® or “I'm going to teach you how to...* This metaphor of
programming as teaching the computer is an impoitant part of Logo's style.

The LRPCLY procedure is invoked by typing its name, and specifyinz values for its
inputs. Similarly, the instructions which make up the definition of LRPOLY invoke other
procedures. The line '

' LEFT :LANCLE

invokes a procedure named LEFT, and gives it as its input the thing stored in the box
named LANGLE. (Logo knows that LEFT is a procedure, not a variable whose value we
want, because the word LEFT is used without punctuation. If it were :LEFT Logo would
look for a variable of that name.) The procedure LEFT happens to be a primitive
procedure, one which is built into Logo. (It turns the turtle o the left by the number of
degrees given as input.) DBut the way you invoke a primitive procedure is no different
from the way you invoke a user-defined one.

So far, we've used only numbers as inputs to procedures. Numbers are often used in
graphics programs, representing either angles or lengths of lines to draw. But we'll see
later that Logo can understand other kinds of things as inputs also.

There are some subtle issues in computer science lurking in this example. One such
issue is that when we invoke LEPOLY, we need to know that it requires three inputs, and
what those inputs mean. But we don need to know the names of the variables
associated with the inputs within LEPOLY. In fact, those variables only exist while
LRPOLY is active. They are created when LRPOLY is invoked, and they disappear when it
finishes. We call them local variables. Among other reasons, this locality of variables is

better than BASIC's global variables because it helps ensure that one part of a program
doesn’t mess up another part. If LRPOLY is used as part of a larger group of procedures,
and another procedure also uses a variable named SIZE, the two don't interfere.

In discussing this short procedure, I've referred bricfly to the ideas of symmetry,
inputs, naming, variable. metaphor, evaluation, invocation, and locality. These are
cxamples of the intellectual content with which Logo concerns itself. Some of these ideas
are specific technical parts of programming itself, like inpuis and invocation. Others are
more general mathematical ideas, such as symmelry and locaiity. Still others are ways
of thinking about thinking itsell, like meiaphor and debugging. Later in this paper, we'll
investigate some of these ideas in more detail.

What's Easy and \What's Hard

Several times in his article, Tinker refers to some 2spect of Logo as being powerful
for sophisticated programmers, but hard for beginners. Yet he recommends Logo for
young beginners, and not for more advanced students! This doesn’t make sense.

One problem is that it’s possible to confuse a few different meanings of the word
“easy." Consider riding a bicycle. It's easy to lcarn to ride, in the sense that ust about
anyone can do it. Ycu don't have to be unusualiy smart or well coordinated. But it's
hard to learn, in the sense that you can't just do it right away. You have to invest a
good deal of effort, and fall down a few times. But this investment is not onerous to kids
learning to ride. It's fun! The eifort is also educationally valuable in its own right; it
teaches self-discipline and planning for long-term goals. But kids wouldn’t undertske the
cffort if the result (being zble to ride = bike) veren’t worthwhiie to them.

The dilficulty of learning to ride a bike is inherent in the task; it's not anyone's fault.
On the other hand, il the pedals were on the handlebars, bik: riding would be harder,
for no good reason. Part of good bike design is to avoid putting unnecessary difficultics
in the way of the learner.

Another way things can be hard is that they can conflict with what you're already
used to. For example, the Linotype machine used for typesetting (when ii's not done by
computer} has a special keyboard which is designed to be very fast to operate. Dut it’s
very different from the standard typewriter keyboard. It's not much harder to learn the
Linotype keyboard than the l.ypewritm: keyboard, but it's almost impossible to learn

both of them.

Some of the things Tinker considers hard in Logo really are hard, in the same way

3

that learning to ride a bike is hard. The whole idea of assigning values to variables, for
example, is hard for any beginning programmer, in sny language. But many of the
specific details Tinker calls *hard for beginners® aren’t hard for beginners at all.
Instead, they're hard precisely for ezperienced programmers sieeped in BASIC! It's like
the analogy of the two keyboards. It is only because Tinker tries to identify Logo
inechanisms with the style of programming he himsclf understands best that be {inds

Logo difficult.

The Use of Metaphor

One of the important insights behind the design of Logo is the use of mctaphor in
learning. We've seen the example of the word TG which is used to conjure up the
inetaphor of programming as teaching the computer. I'd like to introduce another
metaphor, in which the computer is described as being full of little people, each of whom

knows how to carry out some particular procedure.

To be specific, consider this example. Things which are underlined here are printed

by the computer.

TO SECOND :THING
OUTPUT FIAST BUTFIRST :THING
END

?PRINT SECOND [TiE BLUE ELEPHANT]

BLUE
The procedure SECOND cutputs the second element of its input. In this example, the
input to SECOD is a list of words, 2nd the procedure gives us the second word in the list.
TThis is our first example of the fact that procedures can have an oufput as well as having
inputs. *Output® doesn’t mean *print®; the output from a procedure is used 2s an
input to another procedure. In the example, the computer prints the word BLUE because
the output from SECOND is used as the input to the PRINT procedure.

It may be helpful to think of an instruction like this as a sort of bucket brigade, in
which the little person who carries out each procedure passes something on to the next
one in line. So in this case, SECOND hands some information to PRINT. The PRINT
procedure, at the head of the line, doesn't pass its bucket on to anyone else, bul does
something with it—throws the water onto the fire. Tiie metaphor is not peifect, though,
because each procedure in the line doesn’t just pass on the same information it is given.
Instead, the procedures in the brigade procesa the information in some way. . In this
example, SECOND passes on as its output only the second element of its input.

A similar bucket brigade is at work within the SECOND procedure itself. The
primitive procedure BUTFIRST gives as its output everything but the first element of its
imput. The primitive FIRST outputs the first element of its input. In this example, the
bucket brigade works like this:

(THE BLUE ELEPHANT) (BLUE ELEPHANT)
NNEPARN /\
A BUTFIRST

At the head of the brigade, QUTPUT makes the word BLUZ be tho output from the
procedure we're deflining, SECOND.

This bucket brigade, by the way, is precisely the idea which is called composition of
functions in algebra classes. This important mathematical ilea is, for some people,
more compelling in the context of Logo programming. For one thine, the invoeation of a
procedure is a process which happens at a particular time, so it's natural to think sbout
a sequence of invocations. Algebraic functions aren’t taught as a computational process,
but as timeless facts. Also, the domain of words and sentences is more concrete and
[amiliar, to some people, than the more abstract domsin of numbers.

C. Tinker’s Specific Objections
We are now ready to look at Tinker’s specific objections to Logo.

1. Lists

Tinker's first example of a difficulty in Logo is the use of lists. *The full power of
lists is awesome, but also far heyond the reach of beginning programmers. Even though
the Logo implementation of lists is simple aud straightforward, beginning students must
still grapple with the underlying concepts.®

Here is the underlying concept: A list is a bunch of things. For example, the list
[VANILLA CHOCOLATE STRAWBERRY]
is a list with three elements, each of which is a word. The list
[CCFFEE [CHOCOLATE CHIP] [ROCKY ROADI]
is a list of three clements, two of which arc themsclves lists. Is that difficult to

understand?

Here is a Logo program which uses lists like these:

TO PRAISE :FLAVORS
IF EMPTYP :FLAVORS [STOP)
PRINT SENTENCE (I LOVE] FIRST :FLAVORS
PRAIZE BUTFIRST :FLAVORS
END
And here is how the program might be used. What the ~omputer types is underlined.
PPRAISE M[ULTRA CHOCOLATE] [CHOCCLATE CINNAMON RAISIN] GINGER]
I LOVE ULTRA CHOCOLATE
I LOVE CHOCOLATE CINNAMON RAISIN

I LOVE GINGER
?

This procedure is not terribly different from the procedure SECOND we looked at
above, but | don’t want to explain in detail all seven of the primitive procedures used
within it. Instead, let me briefly explain the overall effect of each line of FRAISE. The
first says that if the input is empty, stop this procedure. (The importance of this step
will become clear in a moment.} The second says to print a sentence combinine the
words I LOVE with the first element of the input. So, for example, the iirst thing that
happens in the example shown is that Logo prints I LOVE ULTRA C!IOCOLATE. Finally,
the third instruction invokes the PRAISE procedure again, but with an input containing
all but the first element of the original input. Zach time PRAISE is invoked, its input is
smaller by one element, until finally the input is empty. Then the first line comes into

play, terminating the program.

Suppose you wanted to do what this program dces in BASIC. Since BASIC doesn'’t
have lists, you'd have to set up an array of character strings. If you want to be able to
type in all the flavors at once, you'd have to write a fairly complicated program just to
split up a large string into smaller strings, one for each flavor. You would have to decide
in advance how many flavors to allow for, and how many characters to allow in the
name of each flavor. Logo's use of lists makes things so simple! You want a list of three
Mavors? Just type it in. If you want 31 flavors next time, no problem.

Logo’s emphasis on lists is there for a reason. List processing has proven to be a very
powerlul tool for the manipulation of human language. A sentence is a group of words,
not a string of characters some of which happen to be spaces. Language was chosen as a
central application for Logo because it is something with which everyone is familiar. We
don’t all do algebra, but we all speak English or some other natural lanzuage. We play
with words, whether by writing poetry or by speaking Pig Latin. In his article, Tinker
gives this problem as an example of something which is easy to do in BASIC: "Suppose

11

one wanted to print out the tenth through the twentieth odd numbers.* Sure enough,
this is exactly the sort of thing which is ensy to do in BASIC. It is not the sort of thing

which any human being would find interesting!

It's quite true that the same lists which make the PRAISE program so simple can be
used for more complicated purposes. Indeed, cne of the design yoals of Logo is expressed
in the slogan "no threshold, no ceiling.®* This means that the same mechanisms which
are available to beginning programmers also meet the needs of the most scphisticated

experts.

Extensibility
Actually, though, when Tinker gives specific examples of what he finds difficult about
lists, his difficulty isn't really about lists at all. It has to do with the idea of variable

typing--that is, restricting particular variables to contain only a certain kind of object.

Tinker points out. correctly, that Logo variables are not typed. but that there are
two types of objects in Logo, words and lists. (He identifies numbers as a third type, but
this is incorrect. A number is simply a word which happens to be full of wigits instead of
letters. There is no special numeric object type.) He prefers the typed variables of
BASIC, in which a dollar sign as part of a variable name indicates that the variable

contains a character string.

The irony of Tinker's position is that untyped variables contribute to the
extensibility whick he praises in Logo. Extensibilily is not a single well-defined property
of a language, like list processing or procedural organization. Instead, it is an ideal to
which languages come more or less close. The general idea is that users should be able
to extend the power of the language in a smooth way. That's quite vague, so I'll try to

give some examples.

Every programming language is a little bit extensible, simply because writing a
computer program means extending what you were able to do before. But the extent to
which the extension is well-integrated with the original power of the language varies.
For example, in BASIC, there are about 2 dozen named things the language knows how
to do (LET, INPUT, GOTO, and so on). But when a BASIC user invents a new thing, she
can’t give it 3 name, and create a new BASIC command. Instead, the new thing must be
referred to by a line pumber, using the GOSUB command. Sayinc GOSUB 4380 is not
mnemonic in the way that PRINT is mnemonie,

Logo is not perfectly extensible, but it does better than BASIC. For example, the

12

primitive procedure FIRST outputs the first clement of its input. The nrocedurz SECOND
we defined earlier outputs the second clement of its input. Although one is a primitive
and one is a user-defined procedure, they are invoked in ¢xactly the same way. Each
one can be used wherever the uvther could be used. This similarity between the two

procedures is an example «[what I mnean by *smoothness.®

‘The primitive procedure FIRST can accept cither a word or a list as its input. If the
input is a word, the output is the first letter of the word. If the input is a list, ti.
output is the first clement {word or sublist) of the list. Logo's elegant handling of the
hicrarchy of sentence, word, and letter makes it an ideal medium for exploring human

language.

The point I'm leading up to is that SECOID, too, can accept either a word or a list as
input. That input is assigned to the variable named THING. (Look back at the
procedure definition.) If Logo had typed variables, as Tinker recommends, we would
have had to specily the variable THIIS as being either of type word or of type {fist. That
would mean that the SECOND procedure would work only on words, or only on lists.
We'd have to write two separate procedures to handle the two cases. Pascal, a typed

language, suffers from exactly this problem.

Ope way in which Logo is no! extensible is that it provides infix notation for
arithmetic procedures (2+3 as distinct from the preiix form SUM 2 3), but users can't
define their own infix operators. Another way is that some primitives will accept a
variable number of inputs, but user-defined procedurcs must have a definite, fixed

number of inputs. These are real weaknesses of Logo, not mentioned by Tinker.

Objects Needn't Live in Varizbles

In the background of Tinker's position on variable typing is the fact that he is
accustomed to programming in BASIC, in which a datum rarely exists without being
assigned as the value of a variable. In Logo, data are used as inputs and outputs of
procedures, as in the bucket brigade examples earlier.

This difference explains Tinker's confusion about the specific question of keyboard
typein. Tinker is thinking in terms of the INPUT command in BASIC. This command
actually combines two purposes: it reads something fiom the keyboard, and it stores the
result in a variable. The BASIC INPUT command, thercfore, reauires a variable name as
part of the command syntax. BASIC interprets what it reads differently for different

variable types.

13

Tinker is trying to interpret Logo's typen facility as if it worked like BASIC's. But
in Logo, the reading of keyboard typein is separate {rom the assigning of values to
variables. There is a primitive procedure cailed READLYST (abbreviated RL), which reads
a line from the keyboard, and outputs a list containing whatever the user types.
Another primitive, READCIIAR or RC, reads oniy a single character from the keyboard and
outputs it. That primitive is generaily used for something like a video game. where a

single keystroke has some immediate effect.

In ecarlier versions of Logo, the READLIST primitive was called REQUEST, a name which
might leave room for doubt as to what kind ¢! object is read. The change to PRADLIST
is one example of the fact that Logo's designers continue to think about how the
language can be improved. But if Dr. Tinker has trouble remembering that READLIST

reads a list, I don’t know what we could do to make it any easier for him.

It is the natural thing, in Logo, to represent a typed line as a list. The user can type
anything on the line, including several words. The list is Logo's way of denling with ata
aggregates. [y accepting anything the user types, Logo makes it possible for a program
to ailow {lexibility in the format of user typein. This [lexibility is in sharp contrast with
the situation in BASIC. For example, suppose you want to write a program which will
read several numbers {rom the keyboard and average them. You’d like the program io
work on any pumber of numbers. So when the user has entered all of them, she must
have some way to indicate the end of the numbers. How about just a blank line? Or the
word "dome®? Sorry, those aren’t numbers, DBASIC won't lct you read them with an
INPUT command which is expecting to read a nutaber. The restrictive typing of input. in
BASIC leads to ugly solutions like *type 9909 when done.®

Sometimes, you want to write a program which expects to read only one word on a
line. Therefore, one of the standard procedures everyone learns quickly is READWORD:

TO READWORD
OUTPUT FIRST READLIST
ERD
This procedure does not “convert [a list] to a number® as Tinker describes it. What it

does is to extract the firs! element from thg list the user types. If that clement is a
number, fine. But it’s not converled to a number. It is Tinker's mentzl image of the
type-constrained INPUT of BASIC which makes nim coasider this situation hard to

understand.

14

User Interaciion Through Procedure Inputs

More importantly, the situation he describes is fairly rare in Logo programming.
BASIC programs do a lot of reading numbers from the Leyboard, because BASIC lacks
the idea of procedures with inputs. His example is about drawing a box of a specified
size. [le envisions writing a program something like this:

TO BOX

TYPE [WHAT IS THE SIZE?]

MAKE *SIZE FIRST RL

REPEAT 4 [FORWARD :SIZE RIGHT 90}
END

This is a Logo procedure in the sense that Logo can understand it, but it is nof a Logo
procedure, in the more profound sense that a Logo programmer wouldn't write it (4is

way. lustead, we would write this:

TG BOX :SIZE
REPEAT 4 (FORWARD :SIZE RIG!T 90)
END

[nstead of invoking the BOX procedure and then, separately, telling the procedure lLow
big to make the box, a Logo user writes the procedure to take an input, so that the size
is specificd in the invocation itself. Tinker has transliterated a program he might write
in BASIC, instead of considering the Logo style of programming.

Letting "Natural® Mean "Just Like BASIC®

Many people, not only Tinker, seem to have a vague but compelling notion of the
"naturalness® of a programming langunge. It's as if all existing programming languages
were approximations to some ultimate language, which we'd all understand by instinct.
To cach person, what seems *nalural® is, of course, simply what that person lLizppens to
know best. I think that Tinker is afraid of lists because they’re ®unnatural® to him in
this sense. (The advertisers who promote software as *English-like* are taking

advantage of the same notion.)

I think this is a bad aesthetic for programming language design, because there really
is nothing absolute about the sense of naturalness. I'd like to propose a better criterion:
coherence. A well-designed programming language is one which hangs together in ils
oun lermas.

There is a specific illustration of this point which is related to the use of lists =3

procedure inputs, about which Tinker complains. There have been two different
syntactic forms for conditional execution of a command in Logo. The older syntax was

15

this:

IF :X=0 THEN STOP
The word THEN is an optional keyword here, The IF procedure, in this syntax, takes one
input, an expression whose value must be either the word TRUE or the word FALSE. In
this case. the expression is :X=0. (\We call such an expression a predicate.) If the

predicate is TRUE, the rest of the iine iy executed. If it’s FALSZ, the rest of the line is

ignored.

The trouble with this syntax is that it is the only one in Logo in whici a procedure
(IF) takes note of “the rest of the line.® All other Logo procedures can take inputs, but
the STOP commaund in the example above isn’t exactly an input to IF. If it were, it
would have to be evaluated before the IF procedure is invoked, just as :X=0 is evaluated.
But then the procedure would stop before sllowing IF to test the predicate. No, the
STOP isn’t an input to IF; it is just held waiting, and IF magically allows it to be carried

out, or doesn’t allow it.

To eliminate this incoherence in the syntax of IF as compared to the rest of Logo,
later versions have used this new IF syntax:
IF :X=0 [STOP]
In this form, IF is a straightforward Logo procedure like any other. It takes two inputs.
The first is a predicate, as before, and the second is a list containing Logo instructions.
The effect of IF is that if the first input is TRUE, then the second input is executed as an

instruction to Logo.

When this new syntax was introduced, even some expert Logo prosrammers objected
to it as "unnatural.® And yet, most versions of Logo have a procedure with this syntax:

REPEAT 4 [FORWARD 40 RIGHT 90)
The REPEAT procedure takes two inputs, a number and a list. It executes the list as Vogo
instructions repeatedly, the number of times specified by the first input.

Nobody considers REPEAT ®"unnatural.® But it could have been invented this way:
REPEAT 4 TIMES: FORWARD 40 RIGHT SO
This would be more *English-like.* But it has never been part of Logo, and nobody has

ever suggested it.
Why is REPEAT perfectly “natural® the way it is, while the virtually identical IF is

widely rejected? Simply because BASIC has an IF statement, but not a REPEAT
statement! The hidden definition of *natural® is *just like BASIC.* Even some people

16

intimately involved in the design of Logo faii into this trap. It’s a particularly dangerous
trap for someone trying to compare two languages, because it easily leads to the hidden
circularity of saying, in effect, that BASIC is the best language because it's the most

BASIC-like.

2. The *Assignment Statement®

Tinker's second complaint is about the MAKE proccdure in Logo. "A second major
stumbling block in the language is the distinction made in variable use between the value
of the variable and the variable itself.* This is not quite right; the distinction is hetween
the value of the variable and the name of the variable. But more importantly, Tinker is

quite mistaken in considering this a special problem of Logo.

To understand the issue here, we have to go back to the analogy about learning to
ride a bicycle. There are some inherentiy difficult ideas in piogramming, and the use of
variables is one of them. The difficulty exists in all programming languages, no more <o
in Logo than in any other. It has nothing to do with syntax: it's a real problem about

the meaning of a variable.

Part of the problem is that the word *variable® is often used in algebra to represent
something which is not variable at all, but rather is a constant value in a problem, which
we happen not to know yet. Although we don’t know its value, we do know that its
value is fixed; it isn’t suddenly going to change half way through solving the equations.

In programming, variables are really variable.

But what a programmer must understand about variables, before anything clse, is
that there are two things you can do to them: you can put something in, or Jook at
what’s already tn. The first of these is variable essignment; the second is variable
evaluation. Tinker calls this distinction ®somewhat arbitrary,® but it is nothing of the
sort. That's like suggesting that the distinction between reading a book and writing one
is insignificant.

[don’t think this distinction is ®difficult to remember,® as Tinker suggests. Nobody
thinks that putting something in a box is the same as taking something out. But if
Tinker is worried that it might be hard to remember, all the more reason to make the
distinction more apparent by being explicit about the process of variable evaluation.

That's what the colon does.

It is BASIC which creates a stumbling block, by blurring this distinction. In the
BASIC assignment statement

LET X=Y
the two variables X and Y are being used in very different ways. Y is being evaluated,
and X is being assigned to. The paradoxical case X=X+1 which Tinker mentions is a
boon, if anything, because it rubs the Leginning programmer’s nose in the sact that he
doesn’t understand the X=Y case eilher!

The issue really isn’t about the precise form of the assigiment statement at all.
BASIC blurs the distinction between assignment and cvaluation in all contexts. For

cxawmnple, vou can say

PRINT X
or
INPUT X
and these two statements look very similar. But you can say
PRINT X+1
and yet you can ! say
INPUT X+1

Why not? The beginsing BASIC programmer has to figure this out, and the language
makes it harder by trying to avoid a distinction which is inberent in the nature of

programming.

BASIC is designed around the idea that programming siiould be ®casy® in the sense
of seeming easy. Let’s bury hard concepts under the rug, so we don’t scare people away.
The difficulty is that when the problem gets out from under the rug, as it inevitably
nwst, the BASIC user is unprepared. It's as if someone invented a bicycle with invisible
training wheels, so that the rider couldn’t fall over, but wasn't aware of the need to
balance. Such a rider might be convinced that bike riding is "casy,* but the convicticn

wouldn't survive her first ride on a real bike.

Logo, on the other hand, is based on the idea that an “easy® language means, in
part, one which brings the important ideas out in the open.

In Logo, the expression :BAZ means "the value of the variable named BAZ.* If what
you want is the name itsell, that's just a normal Logo word, represented as "BAZ.
Consider this Logo instruction:

PRINT SE "NUMBER :NUMBER
The procedure SE (for SENTENCE) takes two inputs and puts them together to form a list.
In this case the first input is the literal word MUNZER, and the second is the thing stored
ia the variable NUMBER. The result of executing this instruction might be to print this:

NUMBER 17
It should be clear, in this example, that two syntactic notations are used {quote and

colon) because two different ideas are being represented.

Exactly the saine thing is happening in the case of
MAKE "WHERE :POSITICH
The procedure MAKE takes two inputs. ‘T'he first is the name of a variable, and the
second is the thing you want to put in that variable. In this example, we s:e copying the
thing found in another variable, POSITION. But we could also have said
MAKE *WHERE *“POSITION
which would mean somcthing quite dilferent: put the word POSITION ifself into the

variable pamed ¥HERE. Or we might have said
MAKE *WHERE POSITION
which would 1nean a third thing: invoke a procedure named POSITION antd put whatever

it outputs into the variable named WHERE.,

[n this regard, ther: is nothing special about variable assignirent. The three

examples might just as well have been

PRINT :POSITION
PRINT “POSITICN
PRIKT POSITION

with the same three interpretations of POSITICN.

The Power of Consistent Notation

[0 the vast majority of cases, the first input to MAKE is a quoted word, like "WHERE in
the examples above. Why didn’t Logo's designers save people a little typing by letting
thein leave out the quotation mark in the particular case of the "assignment statement*?
Tinker says, *It is difficult to understand the rationale for having the first argument a

quoted variable.®

The point is that there is no such thing as the ®assignment statement® in Logo.
Again, Tinker is thinking in terms of BASIC. That language has about a dozen distinct
kinds of "statement,® each with its own ad lioc syntax unrelated to the others. For
v;-xamp!e, the BASIC PRINT statement can include severa! expressions to be printed. The
expressions can be scparated by commas or by semicolons, with slightly different results.
(In fact, expressions separated by semicolons are more closely connected than those
separated by commas, which BASIC prints further apart. This is the opposite of the
way these punctuation marks are used in Dnglish, in which the semicolon is a stronger

19

separator than the comma. To me this seems ®somewhat arbitrary and often difficult to

remember.® Two can play at this game.)

Logo does not have a separate ad hoc syntax for cvery possible instruction to the
computer. Instead, there i3 one syntax, used both for primitive commands ard for user-
written ones. This fact is the most fundamental basis for the extensibility Tinker
praists. The syntax is that to invoke a procedure, you say its name, followed by the
inputs you want to give it. Logo first evaluates the inputs, and then invokes the
procedure. {The evaluation of the inputs may involve the use of other procedures. This
is the bucket brigade situation we discussed earlier.) It doesn’t matter what the
procedure is; the rules for evaluating its inputs are always the same. If you want to use

a literal word as an input, you quote it. MAKE is not a special case.

The syntax of MAKE is what it is to mcintain consistency and clarity. A Logo
programmer who understands how Logo works in general will understand how MAKE
work: without having to memorize awkward exceptions. This ciarity is, as ['ve said, part
of the extensibility of Logo. That’s why MAKE is the way it is, and not to make possible
the ®clever, but... confusing® indirect ussignment which Tinker shows in his article. Dut

that power is an added bonus. Consider this procedure:

TO INCREMENT :VARIABLE
MAKE :VARIABLE (THING :VARIABLE)+1
END

PMAKE *COLOR 88
7PRINT :COLOR

88

?INCREMENT *COLOR
ZPRINT :COLOR

s

?

As you can see in the example, the input to INCREMENT is the name of a variable. The
procedure adds 1 to the value of that variable, and makes the sum be the new value of
the variable. The MAKE command inside INCREMENT does not assign a new value to the
variable VARIABLE, but instead to the variable whose name is in VARIABLE. In the
example, it is the variable COLOR which is incremented.

This is an advanced use of Logo. It's not something we would expect a beginner to
use, or to understand. (Readers should be aware of the dilemma I face in picking
examples for this article. I am trying to rebut the claim that Logo is only good for
beginners, and I can’t do that without using advanced examples. But I am writing for an

20

audience which inciudes people who are not Logo experts. So if you don't understand an
example, that's not because Logo is "hard® in Tinker's sense, only because Logo ta

suitable for studying advanced ideas!)

The *Dummy Variables® Smokescreen

In discussing the use of variables in Logo as inputs to procedures, Tinker refers to
these inputs as *dummy variables.® This is not a term used by Logo designers or
teachers. It's rather a frightening term, and perhaps it’s worth a paragraph to dispei the

fear by explaining what it means.

The name *dummy variable® is a holdover from the first FORTRAN compilers of
the 1950s. In FORTRAN, and also in BASIC, mesi variables aro *really® names for a
particular location in the computer's memory. When you say X, the computer knows
that you really mean inemory location number 437. The ecarliest FORTRAN
programmers were accustomed to machine lanenage programming, in which it's the
programmer’s job to know exactly where everything is stored in memory. It turns out
that the variables used for procedure inputs were called *dummy® variables because

they do not, likc ®reai® variables, correspond to u particular memory location.

The fact is that no Logo variable represents a particular memory address in this way.
But a much more important point is that the user of a programming language should not
have to worry about any of this! The whole point of inventing high-level programming
languages is to allow peopie to think about the problems they want to solve, and not
about what is stored where in memory. No child who hasn’t been ruined by BASIC has
any trouble understanding that procedures can have boxes associated with them, cailed
inputs, and when you use a procedure you have to put things in the boxes first. This is
only ®very abstract® to Tinker because it is not the way ke thinks about programming.

3. Indexing
Tinker’'s third complaint is that Logo lacks an equivalent to the FOR-NEXT loop in

BASIC. There is a deep issue behind this question, but it is not the issue he sees. TLe

issue is one of dealing with data aggregates.

Jn BASIC, the data aggregate is the array. An array is a group of objects. The
number of objects in an array is fixed in advance, and the objects must all be of the
same type. Each object in the array is identified by a number. That is, if X is an array,
then X(3) is the third thing in the array.

In Logo, the data aggregate is the list. A list, too, is a group of objects. But the size

21

of a list is not fixed in advance, and the clements of a list may be of different tvpes.
Since the size of a list is not fixed in advance, the FOR-NEXT mechanism is not

appropriate for the problem of doing somethiug to each element in turn.

To make this clearer, consider this fragment of a BASIC program:
10 DIMENSION X(10)

60 FOR I=1 TO 10
60 PRINT X(I)
70 NEXT I

Lines 50 to 70 print all the clements of the array X. Because we know in advance that
there are rxactly 10 efements, it is simple to refer to the range ol index numbers in line
20.

A somewhat similar Logo procedure might be written this way:

TO CME.PER.LINE :LIST

IF MPTVP :LIST [STOP}
PRIRT FIRST :LIST
ONE.PEAR.LIIE BUTFIRST :LIST
END

In writing this procedure, we don't know in advance how many elements are in the list
which is its input. So instead of counting them, we use a differcat meckhanism: We take
the list elements one by one, starting from the beginning, and continue until we have
emptied out the list. This approach is certainly different from the array-index idea. But
it isn't any barder. In fact, in one sense it is -easier; we have avoided introducing the
auziliary vartable I which was required in the BASIC program.

Is Recursion [Iard?
We've already seen several examples of one procedure invoking other procedures.

The particular case in which a procedure invokes itself is called recursion.

Here, more than in any other issue, we have to think about what *easy® and "hard®
raean in terms of our educational goals. There is no doubt that recursion is & *hard®
concept, in the sense that it takes some struggle to understand it fully. The difficulty
isn’t arbitrary; it's not like the bike pedals on the handlebars. Instead, it reflects the
tremendous mathematical power of the idea of recursion: to solve a problem, it
sometimes helps to solve a smaller version of the problem as the first step.

Logo learners don't have to understand the full power of recursion to be able to
perform repeated actions in Logo. Beginners can start with a procedure like this:

s¥p

e

TO POLY :SIDE :ANGLE
FORWARD :SIDE

RIGHT :ANGLE
POLY :SIDE :ANGLE
END

This is how you draw a regular polygon in Logo turtle graphics. POLY takes two inputs:
the length of a side, and the angle to turn between :sides. It draws a side, turns once,
then invokes the same POLY procedure with the same inputs. This starts the procedure
again from the beginning.

As a programming tool, this procedure has a severe limitation. It keeps running
forever, retracing the same polygon. So it can't be used as part of a bigger program
which also does other things. But it has the advantage that everyone understands how it

works.

The next step in understanding recursion might be to change the values of the inputs

in the recursive invocation:

TO EPIRAL :SIDE :/NCLE

FORWARD :SIDE

RIGHT :ANGLE

SPIRAL :SIDE+1 :ANGLE

END
This procedure SPIRAL is just like POLY, except that it uses :SIDE+1 instvad of :SIDT as
the first input to itsell in the recursive instruction. This means that if the SIDE input
was, say, 20 when SPIRAL is called the first time, it will be 21 the seccad time, 22 the
third time, and so on. The effect is that instead of a polygon, it draws an outward-
growing spiral.

There are several more things to learn about recursion in Logo, and I don’t have
room to teach them all here. One example is how to get a recursive procedure to stop.
But we've actually already done that several times, most recently in the ONE.PER.LINE
procedure. In any case, the only point I want to make now is that beginners can use
recursion, in simple ways, while more advanced programmers can learn to benefit from
the power which it has, which iteration does not have.

Just because a bicycle can do wheelies doesn’t mean you must do wheelies the first
time you ride one. But knowing that you can learn to do wheelies later helps make even

the first awkward practice sessions appealing.

Is Iteration Easy?
I've explained that the recursive structure of Logo is well-matched with its list
processing capability, because a variable-length list can’t be iiandled casily by the FOR-

NEXT style of fixed-count iteration.

But is FOR-NEXT so casy? Tinker writes as if everyone were horn already familiar
with that notation. Dut it has its own pitfalls. liow do you know, when vou see a FCR
statement, what range of statements is to be repeated? The corresponding NEXT may be
later on the same line, or buried 400 lines down. In the Logo approach, the range of
instructions to be repeated forms an entire procedure. What happens if the final value
given for the index variable is Jess than the initial value? The answer to Lhis question is

*sutnewhat arbitrary and often difficult to remember.®

The short BASIC program fragment I gave earlier woiks well cnough when we know
how big an array is, and we want to print all ~f it. But suppose in a res! situation wo
don’t know how manj’ cletnents we waat to print untl we've examined some or all of
them? As soon as the task gets at all complicated, the simple-looking FOR-NEXT
structure becomes {oo simple to do ke job. Recursicn is flexible cnough for any tack.

Tinker’s actal example, though, was not so sensible as printing the elements of an
aggregate. Instead, he uses an artificial cxample of printing out a range of odd numbers,
for no particular reason. In this example, the voriable I is not auxiliary. It is actually
the thing he wants to print. So for this artificial example, the BASIC style does seem
natural. But the example is a cheat—that’s rot what people really want to do with their

compiuters.

You Can Have Iteration If You Want It
If you do want the equivalent of a FOR-NEXT loop in Logo, it is easy enough to
invent one. What we want is a procedure with four inputs: the name of the index

variable, its {irst value, its lnst value, and the thing to do repeatedly:

TO FOR.!EXT :VAR :FIRST :LAST :COMMAND
MAKE :VYAR FIRST
IF :FIRST > :LAST [STOP]

RUN :COMMAND
FOR.NEXT :VAR :FIRST+1 :LAST :COMMAND
END

Tinker's example would then be written this way:
FOR.NEXT *I 10 20 {PRINT 2+:I-1]
Now, the FOR.NEXT procedure is not something a beginner would write on the first day

o1

of using Logo. But it certainly is something a teacher could provide, if it seems really to
be the natural way of solving an actual problem. [lowever, the problems Logo

programmers undertake to solve are not usually nes for which this is a good style.

The FOR-NEXT loop is only one of many possible iterative conteol structures. More
powerful languages which share BASIC's iterative approach provile things like WiilLE
(do this while some arbitrary condition remains truej, UNTIL (do it while the condition
is false}, and a more general sort of FOR (allow any updating instruction between
iterations, not just incrementing a variable). Because Logo instructions can e
manipulated as data, using the list processing ability of the language, and then executed
with the RUN command. any of these itcrative structures cun be implemented

straightforwardly in Logo.

When Iteration Won’t Do

Consider thia turtle graphics rocedure:
TO TREE :SIZE :LiPTH
IF DEPTH=0 [CTOPR)
FORWARD :SIZE
LEFT 25
TREE :SIZE/2 :DEPTH-1
RIGHT 60
TREE :SIZE/2 :DEPTH-1
LEFT 25
BACK :SIZE

T
/

TREEX 100 §
This is a somewhat more advanced use of recursion than POLY or EPIRAL. It is based on

the fact that the lelt and right branches of the tree are each smaller versions of the tree
itself. A program structure like this one cannot be built out of the simple iteration
BASIC provides. To do this in BASIC, you would essentially have to invent recursion
yourseil. The program would be much longer, and extremely hard to understand. In

Logo, it's not “easy® to understand, but it is no harder than ii has to be in light of :he

complexity of the task it periorms.

4, Not Enough Mem-ry

Tinker complains that the existing implementations of Logo are too slow and too
small. He's quite right. The current generation of 2-bit microcoimputers can barely

support a powerful language iike Logo.

But he's less right than he was a year ago. The two versions ! Logo for the Apple,
~written a few years ago, require 64/ bytes of memory. Most of that is taken up by the
interpreter itself. Atari Logo, just released, fits in an Atart 400 computer with only 16K
bytes for the interpreter itsell, leaving another 16K for user procedures and data. On

the larger Atari models, there is much more user memory.

Logo is also l-ecoming zvailable for the IBM PC. This 16-bit processor has an ample
memory for just about any imaginable Logo program. The [BM is the first of a growing
family of 16-bit machines. Soon they will be the standard, and the niemory probiem will

disappear.

Even on existing machines, the space problem is not so terrible. We've scen many

complex and interesting projects done on 8-bit microcomputer versions of Logo.

The space shortage in 2-bit micros affects not only the user workspace but the
language itself. Some implementations lack primitives like ¥I/BERP or ITEM becaunse
there wasn’t enough room to include them. Older research versions of Logo included
things like arrays as well as lists, which are not in any currently available
implementation. It would be nice to include cven more advanced features, like a fast
pattern matcher. Hardware improvements should make these extersions to Logo possible

within a couple of years.

D. Generz] Remarks

In this concluding section, I'd like to move beyond Tinker's vbjections to Logo. I'd
like to compare Logo with BASIC from my own point of view, and then move on io
consider ways in which the philosophy of Logo can be extended iz further language

development.

The Forest and the Trees
Here are two criticisms I've made of BASIC earlier in this article:

e BASIC is not procedural. [t does nothing to cncourage a modular
programming style,

e The use of commas and <emicolons in the BASIC PRINT .tatement i
backwards from their use in Loghisii.

Both of these criticisms are valid, I think, Lut they are certzinly not cqually
important. The first is a fundamental property of the language. It pervades every
aspect of BASIC programming. [t is, I think, a strong objection to the use of BASIC by
anyone for any purpose. The second objection, although a real one, i3 a detail. It could
casily be fixed. Lven if not fixed, it is not a real reason to avoid BASIC or to prefer a

different language.

I say ail this because I'm afraid that in answering all Ticker. Jdetailed points about
things like quotes and colons, I may have encouraged you to lose track of what is really
important about Logo and its competitors. The essential thing to remember is that Logo
is a powerful language, which implements a consistent philosophy of pro~ramming in a
way which is accessible to people at all levels of expertise. BASIC is a toy language
which is okay for listing odd numbers, but inadequate to any more interesting project.

Not long ago [wrote a video game program in Atari Logo. The program displays
four spaceships on the screen. When two ships collide, the program notices, and issues
sound effects and flashing lights. Each ship can be steered either randomly, by the
program, or undcr control of a joystick, by a human player. There can be any number
ol players from zero to four. The program steers zall the ships when it starts, but it
notices the operation of a joystick, and relinquishes the associated ship to the player
using the joystick. The ships are shaped like spaceships, and move against a background

of stars.

All of this fits in 85 lines of Logo. It took me about four hours to write and debug it.
There are 10 procedures in the 85 lines, cach with a specific job to do.

I don’t think I could have written this program in BASIC at all. Certainly it couldn’t
be so small and clegant, and it would take weeks rather than hours.

Several years ago, a colleague of mine wrote a very sophisticated pattern-matching
program in Logo. It took ten lines. I'm not sure anyone could write the same program

in BASIC in any length cf time.

To say that Logo has limits is to say the obvious. Logo is the finite product of
{allible human minds. DBut to say that it is suitable only for beginuers in elementary

schools is fudicrous.

Player-Missile Graphics: A Czse Study

As a concrete illustration of the profound difference in design philosophy between
Logo and BASIC, I'd iike to discuss the support of the special-purpose animation
hardware of the Atari Home Computers in tire two languages. The point of the example
is not that the hardware details are important in themselves, but that the we» in which
rach language interprets the hardware is revealing about the languages.

The hardware in question is designcd to allow small, amimated objects to move
quickly across the TV screen against a more stationary background. This is a useful
capability for video games, which are populated by spaceships or asteroids or gorillas
who move in this way. The hardware was designed to be adequate and inexpensive,
rather than elegant. There are four *players® rnd four *missiles®; the difference is that
players are cight dots wide, while missiles are only two dots wide. Both are, in effcet,
columns as tall as the TV screen. Typically, though, the shapes they are used to display
are not 5o tall, but are more nearly square in extent. To move the player or missile
horizontally requires only changing one number in a horizontal position register, but to
move it vertically requires the programmer to copy the numbers represeniing the actual
shape {rom one place in computer memory to another place. Moving diagonally requires

the combination of both operations. Moving smoothly diagonally is quite complicated!

Before a programuner can use player-muissile graphics, he must first zllocate a large
block of computer memory. This block can’t start at any oid memory address; it must
te on a "page® boundary. {Never mind if you don’t know what th:t means. The point
is simply that it's a detail which must be attended to, and one which is of no intcllectual
interest.) Then the block must be filled with zeros, except for the parts of each column

where the desired shape is filled in.

To do all this in Atari BASIC, the programmer must study many arcane details. For
example, there are particular mazgic addresses in memory where the programmer puts
things like the Lorizontal position information. Allocating the block of memory for the
shape information is mysterious, especially because of the special requirements on where
it can be located. Once all this is done, moving a shape horizontally is pretty easy, but
moving it vertically requires copying the shape information with a slow and complicated
FOR-NEXT loop. The program which results is full of PEEXs and FOKEs.

28

This complexity meant that for a long time, hardly anyone managed to use the
animation hardware except for the professional game programmers at Atari. 13ut when
Atari introduced a version of Microsoft BASIC for their computers, the advertisin~
announced with great fanfare that *Microsoft BASIC supports player-missile graphics.®
What does this mean? [t turns out that, of all the complexity involved, what the
Microsoft designers had noticed was the slowness of the FOR-NEXT loop to meve a
shape vertically. So they invented a new command to copy a block of memory from one
place to another. They did nothing about the complexity of the hardware. Microsoft
BASIC users still need to know all the arcane magic numbers, and ticir programs are
still full of PEEKs and POKEs. Vertical motion, while faster than before, is still doite very

differently from horizontal motion.

The designers of Atari Logo took a very different approach. The iour players are
used as Logo turtles. For the Logo programmer, they van be moved in any direction.
horizontally, vertically, or diagonally, with the same straichtforward coromands. VWhat
the programmer says represents the desired motion in an understandable way. The
programmer can focus her atteution on the intellectually interesting part of tiic problem

she Is trying to solve, rather than concentrating on arcana.

Logo achieves this simplification by restricting itself to only part of what the
hardware can do. It ignores the missiles altogether. The shape editor, usced to create
new shapes for players, thinks of them as boxes & dots wide and 16 kigh, not as columr:
the entire height of the TV screen. DBut programmers almost always want to use the

players in the way Logo understands.

‘The moral of the story is that for BASIC designers, “support® means only making
the program run faster. They do not provide ¢ntellectual support. For Logo designers,
support means not only speed but also providing a metaphor, a framework in which the
programmet ¢an use Lhe hardware in a way which makes sense,

New Directions for Logo

Logo excels as a programming language because it provides powerful control
structures (procedures) and data structures (lists). These structures were the state of the
art in computer science when Logo was first developed 15 years ago. Today, Logo is still

the most powerful language widely available to nonprofessionals, but it is not the state of

the art.

In data structures, one mmportant new idea is the object-oriented programming of the

it

language Smalltalk. Instead of the traditional notiva of “smart* :rocedures
manipulating “stupid® objects, Smalltalk introduced "smart® objects which in some
sense "know how" to carry out particular tasks. The f.opo TELL command, used (o
direct graphics commands to one of several different turtles, is inspired 'y the object
metaphor. DBut true Smailtalk-like objects have not yet beon part of Loso. An
experimental system cailed qlogo, being developed by Gary Drescher al Atari
Cambridge Research, introduces the power «f object-oriented programming while

retainiag most of the traditional flavor of Lozo.

In control structures, probably the most important new development is that of
muitiple concurrent processes. This capability is important both as & gocd metaphor to
describe projects which aren’t strictly linear in nature, ~nd also o refleet currert
hardware developments, which have made processors inexpensive. The collision demons
of Atari Logo are a primitive form of multiprocessing. A demon is a process which
~simply waits for some cvent to occur: in Atari Logo, demons wait for collisions amnng
the animated turies. \When a collision happens, the demon executes some logo
instruction specified by the programmer. Demons were an early form in which the idea
ol niultiprocessing was tutroduced in artificial intelligence research. More flexible forms

of multiprocessing are possible, and will probably be added to Logo in the future.

Inventing New Lansuages

‘l'inker’s solution to the problems be sees in Logo is to invent new languages of his
own, and to call them Logo. He has, of course, every right to invent new langnages, and
1 hope he succeeds in making programming easier for besinners with them. But it is
extremely misleading, not to say dishonest, for Lim o call his languazes *Logo® if they

embody a philosophy of computing which is the opposite of what the real Logo

represents.

Summary

This has been a long discussion. Here's a brief summary of what I've been trying to
say:

o Logo isn’t perfect.
o But it’s a damn sight better than BASIC!

o Tinker’s specific objections to Logo are based on misunderstandings of what
Logo is all about.

0

® One reason for these misunderstandings is that every programming language
teaches a style; BASIC programmers have trouble breaking out of the BASIC

style of thinking zbout programming,.

¢ What is really important is not the detailed syntax of a lannage, but its
intellectual content. For Logo, this content includes modularity, reeursion.

and the use of metuphor,

¢ The right reason to teach programming in the first place is to teach that
intellectual content, not just to breed programmers or ®computer literates.®

	atarimuseum:
	com:

