
riTARI A1200

Operating S'.jsteM Manual
CSuppl~Ment to the A~00/800 Manual)

Robert A. · Peck

First Draft
11/11/82

<Excludes! Section 5 part 1
and Appendice~ A and B>

Second Draft (coMplete docuMent)
11/30/82

Adds! Section 5 part lt
Appendices A and Bt and
Appendices C and D

ATARI COMPANY CONFIDENTIAL

TRADE SECRETS ENCLOSED

,.

f

__

www.atarimuseum.com

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 APPLICABLE DOCUMENTS

3 • 0 H 0 W THE A 1 2 0 0 C 0 M F· A F~ E S T 0 THE A "t 0 0 I 8 0 0

3.1 The Help Ke~
3.2 What the Fu~ctio~ ~e~s Do

Cursor Left
CuT' SOT' r.: i ght
Cur· sor Up
CuT' sor Down
HoMe Cursor
Cursor to Lower Left Cor~er
Cursor to Begi~ning of Ph~sical Line
Cursor to E~d of Ph~sical Line
Ke~board Enable/Disable
Screen DMA Enable/Disable
Ke~-Click Enable/Disable
DoMestic/Inter~atio~al Char. Set Select

3 • 3 ~(e ~ Red e fin i t i on

Con"lents of the ~(e~ Redefi ni "lion Tab 1 e
ReassignMent of the function ke~s onl~
Non-reassignable Ke~s and coMbinations

3.~ User-Alterable Ke~ Aut-o-Repeat Ra"le
3.5 Caps/Lowr Ke~ Toggle Ac"lion
3.6 LED Initialization
3.7 GaMe Cartridge ReMove/Insert Interlock
3.8 Power-On Self-Test
3.9 Option JuMpers
3.10 Additional Hardware Screen Modes
3.11 Text Screen Fine Scrolling
3.12 Disk CoMMunications EnhanceMents
3.13 Power-On Displa~ EnhanceMent
3.1~ Deleted Features

4.0 MEMORY MAP OF THE A1200

5.0 ENHANCEMENTS TO THE A400/BOO REV.B OPERATING
SYSTEM INCORPORATED IN THE A1200

Peripheral Handler Additions
General IMproveMents

6.0 OTHER CHANGES/GENERAL INFORMATION

IMproved Handling of OS Database Variables
NTSC/PAL TiMi~g Provisions
A1200 OS ROM Ide~tification and ChecksuM

www.atarimuseum.com

~\

- !
: . ~

TABLE OF CONTENTS <CONT'D)

APPENDIX A - An ExaMple Of •~e~board ReassignMent

APPENDIX 8 - Suggestions for the Cor,struction of a New
Character Set for the New Graphics Modes

APPENDIX C - Serial Bus Peripheral Handler Loading,
Linkingt Use

APPENDIX D - Relocating Loader

www.atarimuseum.com

1.0 INlRODUCTIDN

This Marrr_ra 1 is des i grred to se rve as a sup p 1 eMer.t to the
ATARiqOOCTMJ ar.d ATARIBOOCTMJ OPERATING SYSTEM MANUAL.

The A1200, as showr. ir. sections 3-5, is a technical
upgrade of the ABOO. The operating s~steM for the
A1200 has beer. written to Maintain, as Much as
possible, coMpatibilit~ with application prograMs which
have alread~ b ee n developed for the Aq00/800,

Since the basic hardware which controls the user
interface a nd the displa~ is, for the Most part,
COMPatible with the earlier designs, the operating
s~steM, except for the enhanceMents or ch a nges
described here, has reMained largel~ the saMe.
Therefore the data contained in the OS Manual for the
Aq00/800 is still valid.

This Manual h a s been written to provide the user ~ith
data regarding us a ge of the added features of the A1200
operating s~steM, ~ith soMe details about the
characteristics of the peripheral devices with which it
~ill operate. PrograMMers or peripheral develop~rs ~ho
require a greater level of detail regarding the
handling of peripheral -devices should refer to the
docuMents referenced in iteM 2 of section Z bela~ •

...

www.atarimuseum.com

2. 0 AF'F'LJCAE:LE DOCUMENTS

1. ATARI HoMe CoMputer Operating S~steMs Manual.
Describes the OS for the A~OO and A800,
which is the basis for the enhanceMents
described in this Manual.

SERIAL INPUT/OUTPUT INTERFACE USER'S HANDBOOK
F'ART 1.

This docuMent provides a detailed explanation
of the interface requireMents and the tiMing
relationships for the serial coMMunications
capabilities of all of the units
<A-'100/800/1200).

3. ATARI HoMe CoMputer Hardware Manual and A1200
SuppleMent.

The Hardware Manual covers the hardware
registers which control the various functions
of the A400 and ABOO. The suppleMent to the
hardware Man•-•al _ cov~r_s __ the_ a_d9ed features for
control of the A1200. Such details which are
appropriate to the OS handling of such
hardware regist~rs ARE contained in this OS
Manual. The user who has need for other
hardware-related data should refer to ~the
hardware Manual for More inforMation.

4. DE RE ATARI

This docuMent provides the user with an
introduction to the effective use of the
ATARI HoMe CoMputer hardware. Although
written to cover the A400/BOO, the data
contained therein is valid for the A1200 as
well.

www.atarimuseum.com

3.0 HOI-! THE A1200 COMF'ARES TO THE A.IJ00/800

The following is a list of the features and functions
which will be discussed in this chapter. Each will be
explained in a separate section.

In this chapter, ~ou will learn about:

1. The HELP ~~e~

" Lt

3.

The Function Ke~s

How ke~ codes are
canrrot be redefined

redefined

4. How to alter the ke~ repeat rate

5. The action of the Caps/Lowr Ke~

and which ones

6. How the OS initializes the LED's on the ke~board

7. What happens when a cartridge is installed or
reMoved

B. What happen~ during power-on self-test •.

9. What the option juMper assigneMents Mean

10. What new screen Modes the A1200 can use

11. How to enable fine scrolling of the text screen

12. How the disk handler has been changed for iMproved
operation

13. What kind of displa~ is now produced at power-up

14. What features have been deleted as coMpared to the
ALfOO or ABOO

Each of the iteMs enuMerated above corresponds to the
paragraph nuMber in this section which follows. For
exaMPle~ iteM 1 above is covered in paragraph 3.1t iteM
2 in paragraph 3.2 and so forth.

www.atarimuseum.com

3. 1 The HELF' ·~ e-;

The operating s~steM, while watching the ke~board, will recognize
the pressing of the HELF' ke'j as a request to set a flag in the OS
database. This flag can be read b~ whichever application prograM
is in control at the tiMe and react according!~.

No ATASCII ke~code is created for passing to the
prograM. Onl~ the database variable is affected.

a p p 1 i cat i o r1 s
Therefore if

~our prograM is expecting the Help ke~ to be pressed, ~ou

not onl~ watch the ke~board for incoMing ATASCII codes other
He 1 p , but a 1 so o c cas i on a 11 ~ c he c V.. (I

1 p o 11 11
) the co r1 tents of

HELPFG (help flag) database variable to see if Help
r e q 1_1 e s ted •

7 3 z__

M•-•st
than
the
was

The location of this variable is $02DC. The conditions to which
it responds are listed below, along with the codes which will be
stored in HELPFG:

He;.: value

00 °

11 i I

51 0j

91 ;~;

Condition represented

The Help flag is cleared. This flag is cleared
at initial power-up reset and subsequent!~, if
set, Must be cleared b':l the application prograM.

HELF' ke'j alone was pressed.

SHIFT-HELP ke~ coMbination was pressed.

CTRL-HELP ke~ coMbination was pressed.
...

The HELF' ke~ can be used during the power-on displa':l and durin~
the self test feature. See those sections for More inforMation.

3. 2 What The FUNCTION .(e~s Do

The A1200 is provided with a set of four function ke~s. You Ma~
redefine the ATASCII values which these ke~s produce if ~ou

desire. As a Matter of fact, the entire ke~board ATASCII output
Ma~ be redefined as will be seen later. This section shows the
norMal definition of the F1-F~ ke~s, their functions and the
ATASCII codes which the':l produce (if an~) as a result of the
power-on reset assignMent. All values in the table below are
given in hexadeciMal.

FUNCTION KEY ASSIGNMENT SUMMARY

F1
F2

·F3
F4

If pressed alone

Produces the Cursor-up function, returns ATASCII lC
Produces the Cursor-down function, returns ATASCII 10
Produces the Cursor-left function, returns ATASCII 1E
Produces the Cursor-right function, returns ATASCII 1F

1
www.atarimuseum.com

-.
FUNCTION f~EY ASSIGNMENT SUMMARY (cor,t 'd)

Ke~ If pressed with SHIFT

See HOME CURSOF\ be 1 ow Fl
FZ See CURSOR TO LOWER LEFT CORNER below
F3
F'l

See CURSOR TO BEGINNING OF PHYSICAL LINE below
See CURSOR TO FAR RIGHT OF PHYSICAL LINE below

Ke~ If pressed with CTRL

Fl
FZ
F3
F.if

See KEYBOARD ENABLE/DISABLE below
See SCREEN DMA ENABLE/DISABLE below
See .(EY-CLICK ENABLE/DISABLE below
See DOMESTIC/INTERNATIONAL CHARACTER SET below

Ke~ If pressed with CTRL+SHIFT

Fl Ignored
FZ Ignored
F3 Ignored
F3 Ignored

HOME CURSOR FUNCTION

SHIFT-Fl causes the cursor to Move to the hoMe position of the
screen as well as producing the - d~fault ATASCII code 1C. The
default code is reassignable, however the hoMe cursor ~unction

will reMain assigned to this ke~ coMbination regardless of the
code to be produced.

CURSOR TO LOWER LEFT CORNER

SHIFT-F2 causes the cursor to Move to the lower left corner of
the screen as well as producing the default ATASCII code 10. The
default code is reassignable, however this cursor Move function
will renain assigned to this ke~ coMbination regardless of the
code to be produced.

CURSOR TO BEGINNING OF PHYSICAL LINE

SHIFT-F3 causes the cursor to Move to the far left of the
ph~sical line on which it is located (note, not the logical line
which, in the screen editor, could be as Man~ as 3 ph~sical
lines.) This function is perforMed b~ the screen editor as well
as generating the default ATASCII code lE. The default code is
reassignable, however this cursor Move function will reMain
assigned to this ke~ coMbination regardless of the code to be
produced.

2 www.atarimuseum.com

,.

CURSOR TO FAR RIGHT ~ITHIN PHYSICAL LINE

SHIFT-F~ caLrses the cursor to Move to the far right side of the
ph~sical line on which it is located. This function is perforMed
b~ the screen editor as well as generating the default ATASCII
code 1F. The default code is reassignable, however this cursor
MOVe furrct ion w i 11 reMain ass i grred to this ke~ coMbination
regardless of the code to be produced.

~~EYE: OARD ENAE:LE/DISAE:LE

CTRL-F1
produces
operating

cor,trols the ke:Jboard enable/disable furrction.
no ATASCII code. This ke~ coMbination affects

s~steM handling of the ke~board and is
reassignable.

SCREEN DMA ENABLE/DISABLE

It
the
not

CTRL-FZ
<DMA>.
affects

controls the Screen Enable/Disable Direct MeMor~ Access
It produces no ATASCII code. This ke~ coMbination
the operating S:JsteM handling of the displa~ function.

This ke~ coMbination is not reassignable.

The A1200, on power-up, alwa~s enables tbe screen DMA. What this
Means is that the s~steM will alwa~s initialize itself to displa~
an:Jthing which has been defined for the screen displa~ during power
up. This saMe screen DMA enable - ~111 also occur if ~ou touch an~
ke~board ke~ other than the CTRL-FZ coMbination. ~

Various t~pes of prograMs which ~ou write Ma~ be heavil~ involved
in arithMetic coMputations. To speed up the processing, in the
A400 or ABOO, ~ou Ma~ disable the screen DMA. When it is
disabled, the ANTIC processor does not steal MeMor~ c~cles froM
the 6502 to get its data for the screen. Therefore during
disable Mode, the screen reMains blank. When it is enabled, the
full displa~ which ~ou have defined is visible, however, the
processor 1s slowed down b~ an~where froM 10 to ~0 percent as
explained in the section on ANTIC DMA in the Atari Hardware
Manual.

On the A1200, to start the higher speed/ no displa~ function,
press the CTRL-FZ ke~ coMbination. The displa~ will go blank.
To restore the displa~ again at an~ tine, ~ou can press an~ other
ke~.

During ~our arithnetic calculations, ~ou na~ be in continuous
process of updating the Menor~ area where the displa~ data is
contained. You can then get a status of the operation in process
at an~ tiMe siMpl~ b~ pressing an~ ke~ other than CTRL-FZ, then
again press CTRL-FZ to re-enter the higher speed Mode.

3 www.atarimuseum.com

Your prograM, then, on coMpletion of the calculation, could
exercise direct prograM control over the ANTIC DMA variable to
restore the displa~ when the arithMetic intensive part is over.
CSee the ATARI HoMe CoMputer Hardware Manual for data on
prograMMed control of this variable.)

~~EY -CLICf(ENA E:LE/DISAE:LE

CTRL-F3 controls the f(e~-Click enable/disable furrction. If
pressed once, it disables the audible feedback on ke~strokes.

Pres sed again reenables it. This function coMbination onl~
affects an 0 S database v a r i a b 1 e and p r o d 1_1 c e s rr o AT ASCI I code • It
is not reassignable.

You Ma~ control the ke~ click enable/disable froM ~our prograM.
All that needs to be done is to change the saMe flag which the
operating s~steM uses to indicate whether a ke~ click is
required. This flag is called NOCLIK. It is one of the OS
database variables, contained at location $0208.

/sl
On power up and reset, the operating s~steM initializes this
variable to a value of 00, Meaning that ke~ click is enabled.
This location, when it contains the value $FF, indicates that no
ke~ click is desired. The ke~ coMbination CTRL-F3 toggles it
between the values 00 and FF.

In addition to this flag, when the operating s~steM controls the
ke~board, it tells ~ou the er.able-/disable status using the light
eMitting diode nuMber 1 (referred to as LED 1.) Whene~er the
operating s~steM disables the ke~board, it will light LED 1;
whenever it enables the ke~board, it will turn it off. the
operating s~steM does not change the status of the light if YOU
disable or re-enable the ke~board under prograM control.

www.atarimuseum.com

DOMESTIC/INTERNATIONAL CHARACTER SELECTION

C T R L- F .q con t r o 1 s t h e do M e s t i c I i r, t e r r. a t i or, a 1 char a c t e r s e 1 e c t i on •
Default is doMestic. It affects an OS database variable onl~ and
produces no ATASCII code. It is not reassignable. It toggles
the displa~ of character sets, changing between the two each tiMe
the ke~ coMbination is pressed. When the international character
set is selected, LED nuMber 2 will be lit.

The international version of the character set is located in the
ROM beginning at location $CCOO. You can cause the international
character set_ ..;~to be se 1 ected b'3 storing the constant $CC to
location $02F~~ This is the location CHBAS. The norMal ch a racter
set is located in the ROM starting at $EOOO. If a prograM stores
$EO to CHBAS~ it selects the displa~ of the norMal characters.

If '30U have defined 'jour own character set, however, pressing
CTRL-F4 will displa'3 the international character set. This is
because the operating s'jsteM will test CHBAS and find that the
value $.GS:._ is not there. Therefore c'$CJ3~:.Must be the ne>:t value
which is to"be~ed (selects int"l setj. When it tests CHE:AS and
finds $G-8-st~here, it knows that $EO is the ne>:t value to
use during the togg-ie.:_J:Let_~en ch_ar act!er sets.

~- / ~(L J
~- >

3.3 KEY REDEFINITION

You Ma'j redefine Most of the A1200 console ke'3s if desired. The
redefinition process consists ~f setting up a pair of tables
which can be referenced b'3 the operating S'3SteM when it
translates ~our ke~stroke into an ATASCII value.

The two tables are the •(EY Definition Table and the Function •(e:J
Definition Table. The operating s~steM has a pair of data tables
froM which the norMal definitions are Made. You Ma'3 define ~our
own set of tables however, then siMP1'3 tell the operating s~steM
where the'3 are located in MeMor'j.

One such use of ke~ redefinition Might be to experiMent with
other, possibl~ More efficient ke~board la'jouts, such as perhaps
the Dvorak ke'3board. An exaMple is given in Appendix A of a
ke~board redefinition to allow '30U to do such an experiMent.
<Over the ~ears, the QWERTY ke'3 la~out has been the accepted
standard however Man:J people have found DVORAK to be More
efficient. This would allow :JOU to tr:J it for 'jourself.)

5 www.atarimuseum.com

CONTENTS OF THE ~(EY DEFINITION TAE:LE

This table allows Most of the ke~s of the A1200 to generate an~
desired ATASCII code or special internal function. The
exceptions to this are listed at the end of this section. To
r e de f i n e the k e ~ s , i t i s n e cess a r ~ f i T' s t to de f i r1 e an a r e a in
MeMor~ where a 192 b~te table Ma~ be stored. Into this table,
~ou will store the definitiions of the ke~s which ~ou desire.
Later ~ou will tell the operating s~steM where this table is
located so that future references Ma~ be Made to it inst~ad of
the standard definition table.

The organization of this table is as follows:

+-------- - -------------+
Lower case convert.

Group of 64 b~tes
+------------------- - --+

Shift plus ke~
Group of 64 b~tes

+----------------------+
CTRL plus ke~

(Starts at user defined address)
The table of lower case conversions

The table of upper case conversions

Group of 64 b~tes The table of control ke~ coMbo
+----------------------+ conversions

The bottoM-Most b~te in the table shown above is at the address
KEYTABLE START + 191.

The reason that each of the subdivisions of the table has 64
b~tes in it is that the hardware can generate a total~ of 64
hardware ke~codes. These codes, nuMbered 00-63 deciMal (00-3F
hexadeciMal) are used to index directl~ into one of the thfee
ke~code tables. Which table is referenced depends on whether the
CTRL or SHIFT ke~s are pressed.

Note that there is no table for the coMbination of both CTRL and
SHIFT. This coMbination is invalid and is ignored b~ the
operating s~steM.

Each of the three 64 b~te subsections of the table has the forM:

+-------------+
0 0 code · I

I
+ -------------+

01 code

+-------------+

_, =

+-------------+
3F code

+-------------+

B~te 0 contains conversion for ke~ code 00
for ke~ alone, ke~ with CTRL, or
ke~ plus SHIFT. Depends on which
table is accessed per which ke~s pressed.

B~te 1 contains conversion for ke~ code 01

B~te 3F contains conversion for ke~ code 3F

6 www.atarimuseum.com

The codes which ~ou place ih ~our table will either generate an
ATASCII code (for direct character translation) or the':i will tell
the s~steM to perforM a specific function. Specificall':i an':i code
in the r an g e of 8 0 to 9 2 he'": ad e c i M a 1 w i 11 be treated as s p e c i a 1
b~ the s~steM. This is illustrated in the table below.

CODES AND THEIR EFFECT ON THE SYSTEM AFTER TRANSLATION

CODE

00 thru
92 thru

80
81
82
83
8"'l
85
86
87
88
89"
8A
8B
8C
8D

7F
FF

EFFECT (if an'j)

Used as the ATASCII code onl':i•
Used as the ATASCII code onl':i•

Ignore, invalid ke':i coMbination.
Invert the video output to the screen.
Alpha lock/Lower case toggle.
Alpha lock
Cor,trol Lock
End of file
ATASCII code
ATASCII code
"Gon:z:o" fur.ct ion
~(e':i c 1 i ck on/off
Function 1 :.:
Fur.ct ion 2 x
Function 3 :.:
Function "' :t:

:.: NOTE! When it sees these ke'3code translations, it is~told to
DO the function which is described 1n the Function Ke':i
descriptions. This function will be a cursor Move and is
independent of the ATASCII code which the specific Function Ke':i
will produce. The ATASCII coded generation for the norMal and
shifted function ke'js is handled in a different table, whose
description follows that for the ke'jcode hardware translate
table.

BE
BF
90
91

Cursor to hoMe
Cursor to bottoM
Cursor to the left Margin
Cursor to the right Margin

The table below shows the ke':i cap corresponding to each ke':i code.
The ph~sical position of each ke'3 switch within the table
deterMines the hardware code which it will generate. To
deterMine what code it is, take the row address of the cap, and
add it to the coluMn address. The result is the hexadeciMal value
returned to the operating S'jsteM (range 00-3F) for use in the
table lookup for that ke'j.

7 www.atarimuseum.com

~(EYCODE DEFINITIONS TAE:LE

0 1 2 3 5 6 7
+--- - -+- - ---+-----+ - ----+-----+---- - + - ----+-----+

0 0 L J ; I F 1 I F 2 •(+ ::.:
+-----+-----+ - ----+-----+-- - --+-----+----- +-----+

08 0 P U I RET I I =
+-----+-----+-----+-----+---- - +-----+-----+-----+

10 v I HLF' I c I F3 I F'1 X z
+- - ---+-----+ -- ---+-----+-----+---- - +~-- --+ -- - --+

18 .lJ 3 6 I ESC I 5 2 1
+--- - -+-----+ - ----+- - - --+-----+ - ----+-----+-----+

20 t I SF'ACE I N M / > I <
+-----+-----+-----+-----+ - --- - +-----+-----+---- - +

28 R E y I TAB I T Q
+--- - - +-----+---- - +-----+-----+-----+- - ---+-----+

30 9 0 7 8 < >
+-----+-- - - - + - --- - +- - - - -+-----+-----+-----+---- - +

38 F H D I CAF'SJ G s A
+-----+-----+- ----+-----+-----+-----+-----+-----+

As an e :-:aMp 1 e the k e ~ cap " C " i s i n the tab 1 e i n r ow 1 0 , co 1 u M n
2. This Means that the hardware generates a hardware code 10 + Z
or 12 hexadeciMal. Therefore, in the translation tables shown
above, the function code or ATASCII code for this character will
be stored in the ke~ definition table position $12 for each of
the three t~pes of "C" which are valid (c alone, Shifted C, or
Control C). You Ma~ cause each of these perforM a separate
function or generate a separate ATASCII code b~ revising the
tables. •

When ~ou have decided on how ~ou want ~our ke~s to be redefined,
~ou tell the operating s~steM where it Ma~ find the definitions
b~ . storing the address of those definitions in locations 79 and
7A hexadeciMal.

The low b~te of the hexadeciMal address where ~ou have stored the
ke~s should be placed in location 79, the high b~te is location
7A. This . is defined as one of the s~steM vectors. It will point
to the d Jf~ult, or original ke~ definition table at power-on
reset tiMe.

www.atarimuseum.com

REASSIGNMENT OF THE FUNCTION ~~EYS ONLY

There Ma~ be tiMes when ~ou onl~ want to redefine the function
ke~s and not redefine the rest of the ke~board. The A1200
operating s~steM allows ~ou to redefine these ke~s onl~ b~

setting up an 8 - b~te table in place of the 192 b~te table which
~auld have ot h erwise been required. The forMat of this table is
as follows:

+--------- - -+
Fl

+---- - ------+
F2

+-- - --------+
F3

<---- Low e st MeMor~ location of the table

+------- - ---+
F4

+-- - - - ----- -+
I SHIFT-F1
+-----------+
I SHIFT-F2
+-------- - --+
I SHIFT-F3
+- ...:.. -------- -+
I SHIFT-F4 <---- Highest M eMor~ location of the table
+-----------+

When ~ou have
perforM and have
to point to the
located at MeMor~
gets the low b~te
b~te.

decided what fL~r,_<;:.'ti ons each coMbination Must
built the table, change the s~steM vector FKDEF

lowest address of ~our table. This ve~tor is
locations 60 and 61 hexadeciMal. Location_60

of the hex address, location 61 gets the high

NON-REASSIGNABLE ~(EYS AND ~(EY COME:INATIONS

The following ke~s or ke~ coMbinations are either specificall~

wired for special functions or are subjected to special handling
b~ the operating s~steM.

Even though there Might be a hardware-generated ke~ code shown in
the table above, and a corresponding space in the translate
tables~ there is no wa~ to reassign these functions. This is
because the operating s~steM traps the hardware code directl~ to
perforM the specified function and it never gets to the translate
Mode. These ke~s or coMbinations are as follows:

BREAK This function is fixed as a special case in
the operating s~steM. It is sensed b~ the hardware.

SHIFT -- This ke~ is an integral part of the hardware
encoding of an~ ke~ function.

www.atarimuseum.com

CTRL -- This ke~ is an integral part of the hardware
encoding of an~ ke~ function.

OF'TION --+
SELECT 1---- All of these are directl~ wired to and are
START --+ sensed b~ the GTIA circuitr~.

RESET --

HELF' --

CTRL-1

CTRL-F1

CTRL-F2

CTRL-F3

CTRL-F.Il

Directl~ wired to the 6502 reset line.

Function is fixed b~ the operating s~steM.
The help function handling is described
elsewhere in this Manual.

Screen output start/stop function. Trapped
b~ the operating s~steM at the hardware ke~
decode level, controls the listing start/stop
function. See the Users Manual for the A1200.

This ke~ coMbination is used as the ke~board
enable/disable function. If it is pressed while
the ke~board is enabled, it will disable all
ke~board functions with exception of the
following!

CTRL-Fl can still be used to re-enable;
RESET is the 6502 reset ke~,

cannot b€ disabled;
OPTION/START/SELECT not controlled b~ the

operating s~steM.

See SCREEN DMA CONTROL above.
function is not reassignable.

As noted there, this

See KEY-CLICK ENABLE/DISABLE above.
this function is not reassignable.

As noted there,

See DOMESTIC/INTERNATIONAL CHARACTER SET above.

\D

www.atarimuseum.com

3 • .q USEF:-AL TERAE:LE ~~EY AUTO-F~EF'EAT RATE

The A1200 operating s~steM allows ~ou to control the rate at
which a ke~, continuous!~ held down, will repeat its entr~ to the
s~steM. This change Ma~ be done under prograM control b~
Mod i f ~ i n g t h e 0 S d a tab a s e v a r i a b 1 e c a 1 1 e d ~(EYRE F' • It i s 1 o c a ted
~t hex addr e ss 02DA.

This variable deterMines the repetition rate b~ counting the
nuMber of VBLANK (vertical blanking) intervals which occur. For
the NTSC (60 Hz) s~steM, the initial value of this variable is 6;
for PAL s~steMs, the value is 5. This assures a uniforM repeat
rate of 10 characters per second for either s~steM.

Under con t r o 1 of t h i s v a r i a b 1 e , the M a;< i MuM " cor, t r o 1 1 a b 1 e " k e ~
repeat rate would be 50 characters per second on the PAL, and 60
characters per second on the NTSC (screen refresh rate). This
would occur with a value of 1 in this variable.

You Ma~ also control the initial dela~ which occurs before the
ke~ repeat starts. The OS database variable which controls this
is ca 11 ed ~~RF'DEL. Its hex address is 0 209. _r-

1'2-,

It · controls the nuMber of VBLANKs which Must occur between the
sensing of the ke~ pressed until the first repeat occurs. FroM
that tiMe on, the repeat rate is controlled as described above.
The initial values used b~ the OS provide a 0.8 second initial
dela~ for either NTSC (count = .tt8) or PAL (count = .ttO) s~steMs. _ _..

..
3. 5 CAPS/LO~R •(EY TOGGLE ACTION

The CAPS/LO~R ke~ on the A1200 functions as shown in the chart
below:

~(EY COME:INATION

CAPS
CAPS
CAPS
SHIFT-CAPS
CTRL-CAPS

CTRL-SHIFT-CAF'S

CURRENT STATE

Cor.trol Lock
Alpha Lock
Lo~o.~er Case

an~ -
an~ -

an~

NEW STATE

Lower Case
Lower Case
Alpha Lock
Alpha Lock
Control Lock

- no change -

The Mean1ng of the terMs is as follows:

Lower Case
Alpha Lock

Control Locr..

All ke~ caps respond in lower case Mode
All alphabetic ke~s <A-Z) respond in
upper case Mode, all other ke~s lower case

All ke~s respond as though the control
ke~ is being held down as well as the
selected ke~

I t

www.atarimuseum.com

'-··

3.6 LED INITIALIZATION

The A1200 has two LED's on the front panel, called LEO 1, and LEO
2. LED 1, when lit, indicates that the Ke~board is disabled. LED
2, when lit, indicates that the international character set is
selected. The operating s~steM enables the ke~board and selects
the doMestic character set on power up and reset. Therefore
these LED's will both be off.

3.7 GAME CARTRIDGE REMOVE/INSERT INTERLOCK

In the A400 and ABOO, the
ph~sicall~ reMoved the power
cartridge door was opened.

cartridge interlock
froM the entire s~steM

The A1200 no
s~steM. It
initialization
detected while

longer requires this power down of
does, however, autoMaticall~ cause

sequence to occur if a cartridge
the power is on.

MechanisM
when the

the entire
a power - up

change is

The initialization seque nce itself contains a jUMP through the
cartridge initialization address which adjusts the A1200 to this ..
cartridge iMMediate!~ upon its insertion. Likewise, if a
cartridge is reMoved, the s~steM reconfigures itself through the
power on sequence, to be a no-cartridge s~steM. This
initialization is handled b~ the Stage 2 VBLANK routine.

3.8 POWER-ON SELF-TEST

During the initial power-on, the A1200 operating s~steM will
perforM the following quick check of the integrit~ of the s~steM
RAM and ROM:

a. Is it possible to write SFF (all ones) to all RAM locations?

b. Is it possible to write $00 (all zeros) to all RAM " locations?

c. Does a checksuM of the two ROM's coMpare to that stored
within each ROM?

If an~ of these tests fail, the operating s~steM will transfer
control to the self-test MeMor~ test routine. Here a More
thorough test of both RAM and ROM can take place.

I?_

www.atarimuseum.com

~--
\

'

3.9 OPTION JUMPERS

The A1200 is provided with a set of four hardware juMpers which
are designed to tell the operating S':isteM how the S':isteM is
configured. As of the date of this writing, onl':i one of the four
juMpers has been assigned, specificall':i Jl. This is specified in
the table below. During the power-on sequence, the A1200
operating S':isteM reads the state of these juMpers and stores this
state in the OS database variable JMPERS, location 030E.

The bit assignMents for each of the four juMpers is as specified
below. The bits are all active low, Meaning that if a line
reads a digital zero, the juMper is installed.

BIT FUNCTION HARDWARE NAME

0 Self test enable (will run self test if low) J1 (pot 4)
1-3 Reserved for future use
4-7 Unused

3.10 ADDITIONAL HARDWARE SCREEN MODES

The A1200 adds direct access to the reMaining special purpose
displa':i processor operating Modes. The table below shows the
current Mapping which had been provided for the A400 and ABOO.
The table which fallows thereafte·r shows the added Modes and the
nuMbers which the software can use to access the extra Mo~es.

Mode Mapping coMMon to A400/ABOO:

Software Mode ANTIC MODE GTIA MODE

0 ($00) .., ($02) 0 ..._

1 ($01) 6 ($06) 0
2 ($02) 7 ($07) 0
3 ($03) 8 ($08) 0
..q ($04) 9 ($09) 0
5 ($05) 10 ($0A> 0
6 ($06) 11 ($08) 0
7 ($07) 13 ($0D) 0
8 ($08) 15 ($OF> 0
9 ($09) 15 ($OF> 1
10 C$0A) 15 ($(lF) 2
11 ($08) 15 ($OF> 3

Mode Mapping for AlZOO (additional>:

Software Mode ANTIC MODE GTIA MODE
12 C$0C) ..q ($04) 0 (note 1)

13 ($00} :J ($05) 0 (r.ot.e 1)

14 ($0E) 12 ($0C) 0
15 ($OF> 1.lf ·($0E) 0

www.atarimuseum.com

Note 1! The existing character sets will not
recognizable characters for these new Modes.
~ou will have to provide the character set if
these Modes. This is done b~ defining
character set, then Modif~ing the OS database
CHBAS to point to the Most significant b~te

address at which the character set starts.

provide
Therefore
~jOLt use
the full
variable
of the

Appendix B of this Manual contains soMe suggestions on
the Method for designing a new character set to support
these added Modes.

3.11 TEXT SCREEN FINE SCROLLING

The screen editor CE!) now supports fine scrolling of the text
screen data as an option. This fine scrolling option will be
enabled if the database variable FINE (hex location 026E) is set
nonzero prior to issuing the OPEN coMMand to the screen editor.
Likewise the feature will be disabled if this location is set to
00 before issuing the OPEN.

3.12 DISK COMMUNICATIONS ENHANCEMENTS

The A1200 adds the capabilit~ for the resident disk handler to
read and write disk sectors having variable length froM 1 to
65536 b~tes. The default length, as is used on the A100 and A800
currentl~, is 128 b~tes. Both at power-on and RESET (warM
start), the 128 b~te sector leng·tn is established. Your prograM
can alter this length b~ Modif~ing the OS database variable
DSCTLN. The location of this two-b~te variable is 0205 and 0206
Clo b~te in 02D5, hi in 02D6).

In addition to the capabilit~ to read and write variable length
sectors, the A1200 also adds the capabilit~ to write a sector to
the . disk without a read-verif~ operation alwa~s following it.
This is the coMMand 'P' which was specificall~ excluded in the
previous releases of the operating s~steM.

With this capabilit~ added, ~ou have a choice of either using the
verif~, for s~steM integrit~ Calwa~s read after write). Or ~ou
can take a chance of writing a bad sector on rare occasions but
increasing ~our average speed of disk usage b~ soMe value related
to the verif~ tiMe. You Ma~ want to experiMent with soMe of ~our
prograMs with and without verif~ to see the results.

3.13 POWER-ON DISPLAY ENHANCEMENT

In place of the original power-on MeMo pad displa~ used b~ the
A100 and A800 <in the absence of a cartridge or disk), the A1200
displa~s a d~naMic ATARI rainbow. If ~ou press the HELP ke~ while
the rainbow is displa~ed, the A1200 will enter the self-test Mode.

ltl

www.atarimuseum.com

~.0 MEMORY MAP OF THE A1200

The following table shows how the 6502 processor
perceives the various address spaces which it can
access. The MaXiMUM allowable address range, with the
16 bit address of the 6502 is hexadeciMal 0000-FFFF.
This address range is split, b~ the hardware MeMor~
ManageMent circuitr~, as follows!

<Note! The A1200 uses 6~K RAM's as the Main s~steM
writeable MeMor~. Addresses within those RAM's, which
would norMall~ have filled the entire MeMor~ access
space of 0000-FFFF of the processor, are prevented froM
access b~ the MeMor~ Manager. This allows ROM's,
cartridge MeMor~, and peripherals to occup~ a part of
the MeMor~ space as is noted below.>

HEX ADDRESS

FFFF-DBOO

D7FF-DOOO

CFFF-COOO

A1200 MEMORY MAP

WHAT IS ACCESSED THERE

OS-ROM or RAM if ROM disabled

Active low chip selects are
produced for the peripheral
chips through accesses in this
MeMor~ page.

MeMor~ Mapped
as 0000-DOFF

D200-D2FF
D300-D3FF
D400-D4FF
D500-D5FF

I/0 Space
GTIA
F'm(EY
PIA
ANTIC

split

An~ access read
or write to an
address in this
range enables the
cartridge control
line CCNTL on the
cartridge inter
face (saMe as A~OO/
ABOO>.

D100-D1FF, D600-D6FF, and
D700-D7FF are reserved for

future use.

NOTES

1

OS-ROM ph~sicall~ present, but 2
cannot be accessed here.

OS-ROM or RAM 11 ROM is disabled 1 '

rc;-

www.atarimuseum.com

HEX ADDRESS ~HAT IS ACCE SSED THERE NOTES

E:FFF -A 0 0 0 RAM, or cartridge interface
if RD5 line is pulled up to
+5V b~ the cartridge board.
A1200 MEMORY MAP (cont'd)

9FFF-BOOO RAM, or c a rtridge interface
if RD4 line is pulled up to
+5V b~ the cartridge board.

7 FFF-5800 RAM

57FF-5000 RAM, unless in self - test Mode 2

~FFF-0000 RAM

NOTES! 1. Acc e ss to the OS ROM Ma~ be di sabl e d b~
writing a z e ro to port B of the PIA, bit PBO.
Access is norMall~ enabled, with a 1 present
in this bit. CHhen changing this bit in the
register, other bits should not be changed.)

2. The self-test ROM code is ph~sicall~

present in the OS ROM at actual address DOOO
D7FF. However, this area is used for the
access to the MeMor~ Mapped I/0 devices.
When the self-te-st feature is invoked, the
RAM located froM 5000-57FF is disabled.~ The
M e Mor~ Manager reMaps the MeMor~ access such
that the OS ROM ph~sical addresses DOOO-D7FF
are accessed at 5000-57FF. The MeMor~ Manager
uses port B of the PIA, bit PB7 to deterMine
whether to access RAM or ROM in the region
5000-57FF. PB7, if high, accesses RAM. If

· low, causes an OS-ROM access instead. <When
changing this bit in the register, other bits
should not be changed.)

<Port B was used in the Aq00/800 to service
the gaMe ports 3 and 1. The use of the
reMaining bits of this port are specified
elsewhere in this Manual.)

\L,

www.atarimuseum.com

5.0 ENHANCEMENTS TO THE A400/800 REV.B OPERATING
SYSTEM INCORPORATED IN THE A1200

This section describes a set of enhanceMents which
include new Methods of handling peripheral products
and, in a separate section, iMproveMents in basic
operations of the s~steM. The latter Might be referred
t. o as "b ll g f i }; e s " •

PERIPHERAL HANDLER ADDITIONS

To accoMModate a new class of peripheral devices,
operating s~steM now includes a relocating loader,
to upload peripheral handlers through the serial
interface.

the
used
I/0

In the A400/800, device handlers for the peripherals
were uploaded as fixed location (absolute) obJect code.
These handlers were loaded using a set of device
inguiries, or polls, known as t~pes 0, 1 and 2. These
polls are described further in the Atari ~00 and BOO OS
Manual.

The A1200 adds two other t~pes of polls to its
operating s~steM. One poll, known as t~pe 3, is issued
at power-on or reset. tiMe. The other, t~pe ~~ can be
issued as a result of an OPEN COMMand b~ an application
prograM.

T~pe 3 Poll CoMMand

The t~pe 3 poll COMMand itself is used as an "Are You
There?~ t~pe of coMMand. Associated with the t~pe 3
poll are two other t~pes, specificall~ the:

a) Poll Reset

and b) Null Poll

Poll Reset consists of the following SIO COMMand b~te

sequence (refer to the SID docuMent for further
explanation of the b~te t~pes>:

B~te Position

Device Address
CoMMand B~te
AUXl
AUX2
CoMMand ChecksuM '

Value <hex)

4F
40
4F
4F

NorMal (checked b~ peripheral}

1

.-

...

www.atarimuseum.com

The ~F in AUXl and AUX2 define this sequence to all
peripherals as a poll reset.

After responding to a t~pe 3 poll b~ sending a handler
to the s~steM, a peripheral is not supposed to respond
again to a t~pe 3 poll. The Poll Reset COMMandt at
power-up, resets all t~pe 3 peripherals, freeing theM
to respond to the poll request. However, no serial bus
device sends back an~ data as a result of a poll reset
COMMand.

T~pe 3 Poll CAre ~ou there?)

There Ma~ be several t~pes of peripherals which can
respond to a t~pe 3 poll. In t~pes O, 1 and 2, the
device address sent on the serial line specifies which
exact device is being called. In the t~pe 3 poll
processing, however, the address reMains fixed (~F) and
the devices each respond after a specific nuMber of
poll 3 retries. In other words, during poll 3
operations, the coMputer doesn't know which peripherals
are actuall~ attached, but will keep asking "is an~bod~
there" unti 1 it has reached its last retr~ and no
peripheral has responded.

Each peripheral which does respond to the t~pe 3 poll
Must be designed to count the nuMber of retries of t~pe
3 polls, then to respond as described below on its own
specified retr~ slot. Each tiMe it sees a coMMand
other than a t~pe 3 poll, these peripherals Must reset
their retr~ counters. This allows the coMputer to load
the handler for each peripheral which responds, then
restart its poll 3 sequence <original retr~ nuMber
restored) to look for another poll 3 response froM the
next peripheral (if an~).

Since each peripheral responds onl~ once (after a
reset), a second request at a specific retr~

causes no peripheral response and allows the
retr~ slot to be polled.

This poll ("are ~ou there?"'> is sent as follows:

B~te Position

Device address
CoMMand B~te
AUXl
AUX2

Value <hex>

"iF
"iO
00
00

poll
slot
next

CoMMand checksuM NorMal, checked b~ peripheral

2

(_-

www.atarimuseum.com

When, after checking the retr~ count,
peripheral's turn to respond, it sends
following data to the coMputer on the serial

it is a
bad:. the

interface:

a) An ACK response b~te, and

b) 1. Low b~te of handler size in b~tes (Must be
EVEN)

z. High b~te of handler size

3. Device Serial I/0 Address to be used
for loading

1. Peripheral Revision NuMber

These four b~tes, if sent b~ the peripheral, will be
stored in OS variables DVSTAT (02EA hex) through
DVSTAT+3. If there is a successful return to the OS
(not a tiMeout or other probleM), it indicates that
there is a handler to be loaded. The loading is
perforMed, then the t~pe 3 poll is repeated until all
retries are exhausted and no peripheral responds.

Once the device address data is received froM the
peripheral during this t~pe 3 poll, it can thereafter
be referenced direct!~ on the serial bus b~ its address
in place of the original poll address 4F.

.~

Specific details of the actions taken b~ the OS after
receiving an answer froM a peripheral Ma~ be found
Appendix C.

Null Poll CoMMand

in

This COMMand is used as a serial bus no-operation. If
an~ error should occur during loading of a peripheral
handler or b~ the relocator, (see appendix C and D),
the s~steM should be free to "back out" of the linking
of the fault~ loader and tell the peripherals that it
is read~ for the next one to be loaded. Since this
null poll is a non-t~pe-3 poll, all peripherals will
have reset their retr~ counters and should be read~ for
another sequence of retries, looking for their own
response retr~ slot. This Maintains s~nchronization
between the coMputer and the peripherals.

3

..
I
\

(

www.atarimuseum.com

This poll differs froM the T~pe 3 Poll in that the
device naMe and nuMber is included in the poll.
Therefore the peripheral need not count retries of the
t~pe q poll and should answer the poll as soon as the
poll coMMand is recognized. There is no liMitation on
the t~pe q poll; the peripheral should answer its t~pe
q poll each tiMe it is issued.

The peripheral response to a t~pe q poll is the saMe as
for the t~pe 3 poll. The four response b~tes are
placed, b~ the coMputer, into DVSTAT through DVSTAT+3
<02EA through 02ED hex.).

5

. · e_

www.atarimuseum.com

GENERAL ENHANCEMENTS TO THE REV. 8 OS FUNCTIONS

The following functions which are supported b~ the AqQQ/800
Rev • E: 0 p e r at in g S ':l steM have bee r1 fur the r e r1 han c e d b '3 the
addition of the following features!

Printer CLOSE with data in the buffer

The printer handler will ir,sert an EOL (end-of-line) characte:
in ~he printer buffer, if one is not there, before sending the
buffer to the printer on a CLOSE. This assures that the las~

line will be printed iMMediatel':l rather than having the printe~
forced offline to output the final line.

Printer Unit NuMber Handling -

The printer handler has been changed so that it will
process the unit nuMber in the IOCB, allowing separate
addre ss ing for printers P1 through PB.

CIO Handling of Truncated Records on Read

The CIO now places an EOL in the users input buffer on the
occurrence of either a record longer than the buffer being rea~
or an EOF being encountered during the read atteMp~. This
assures that all records are accessible, even if the user ha~
not provided a sufficient buffer size, he will at least get as
Much of the record as he has provided for.

CIO Error Handling With Zero Length Buffer

The CIO wi 11 return a buffer 1 ength of zero (in the- 6502 A-
regis~er) when there is a handler error while effecting a zerc
length buffer transfer. <See CIO section in the OS Manual.>

Displa~ Handler Cursor Handling -

The display handler now accepts a screen clear code no Matter
what value is in the cursor X and Y coordina~es.

Displa~ Handler/Screen Editor MeMory Clearing -

The Display handler and Screen editor will not clear
beyond the end of MeMor';:l as indicated by RAMTOP. Now
possible for the user to specif~ the top of MeMor~ to
by the systeM and to store device handlers or personal
code in the MeMor';:l area above the displa';:l. Changing
graphics Modes, then, will not erase an';:l data which
placed in the RAM area above that assigned for use
displa';:l or screen editor.

MeMOr "::::
it i s

be us.ec
Machine:
displa~

has been
by the

www.atarimuseum.com

Rework of the Floating Point Package -

The A1200 operating s~steM corrects a bug in the Rev B OS. I t
now p r o d '-' c e s a r. e r r or s t a t us when a r. at teMp t i s - M a de t c
calculate the LOG or LOG10 of zero.

New ROM Vectors -

The following fi!-ied entr~ point vectors have been added to thE
A1200 ROM set!

ELJBO JMF' F'UF'DIS e ntr'j to power-on displa'3
ELJB3 JMF' SLFTST er,t r '3 to the self test pgM
ELJB6 JMF' F'HENTR entr'3 to uploaded handler er.ter.
ELJ89 JMF' F'HULN~(er,tr '3 to uploaded handler unlink.
ELJBC JMF' F'HINIS er,t r '3 to uploaded handler irrit.

www.atarimuseum.com

6.0 OTHER CHANGES/GENERAL INFORMATION

This section deals with iteMs which involve operating s~steM
changes, but which do not easil~ fit into an~ other categor~.

IMPROVED HANDLING OF OS DATABASE VARIABLES

During norMal powe~-on seque~ce (cold start), the OS database
variables froM $03ED-$03FF are set to zero. During a RESET (warM
start), the~ are NOT changed b~ the OS. This Means that an
enhanced version of the operating s~steM in the future will be
able to Make use of these locations without reloading theM after
an~ RESET operation.

These b~tes are all reserved for use in future OS revisions.

NTSC/PAL VERSION TIMING PROVISIONS

There are various tiMing differences between the NTSC (60 hz) and
the PAL (50 hz) versions. To eliMinate the necessit~ for
providing a special operating s~steM ROM set for each one, the
specific tiMing adjustMent values are handled within the single
ROM set.

To deterMine which t~pe of s~steM the ROM is operating on, the
operating s~steM checks a flag within the GTIA chip and adjusts
all tiMings according!~. This wa~ possible because the GTIA Must
be different to handl~ the Modified displa~ forMat for the 50 Hz
version. B~ Making certain tiMings a function of the state of
this flag, it was possible to Make external tiMings independ~nt
of the NTSC or PAL s~steM itself.

The tiMing values relate to the handling of the 115 Volt
cassette pla~er <Atari ~10) and the console auto-repeat rate as
shown in the table below!

CASSETTE TIMINGS NOW INDEPENDENT

Write Inter-record gap (long)
Read IRG dela~ (long)
Write IRG (short)
Read IRG dela~ (short)
Write File leader
Read Leader dela~

TIMING

3.0 sec.
2.0 sec.
0.25 sec.
0.16 sec.

19.2 sec.
9.6 sec.

Beep cue duration 0.5 sec.
Beep cue separation 0.16 sec.

Auto-repeat functions now independent TiMing

Initial dela~ for auto-repeat
Repeat ra~e

0.8 sec.
10.0 char/sec.

www.atarimuseum.com

A1200 OS ROM IDENTIFICATION AND CHECf(SUM DATA

Each of the two ROM's in which the A1200 operating s~steM is
contained has a capacit~ of 6~•(bits organized as a•: b~ B. Within
each of the ROM's is a block of data organized as shown in tt1e
diagraM below, to id entif~ the ROM and to give its checksuM. The
checksuM is tested b~ the operating s~steM as part of the power
up sequence.

www.atarimuseum.com

The forMat of the block for the COOO-DFFF ROM is as follows:

+---------------+
I ROM CksuM Clo)f
+- -+
I ROM CksuM Chill
+---------------+
·1 ·· Dl · .. -:· J · · D2 ·J
+-------+-------+
I M1 I M2 I
+-------+-------+

Y1 Y2
+-------+-- - ----+

Option b':)te I
+---------------+

- r A1
+- -+

A2
+-------- - ------+

N1 N2
+-------+-------+

N3 NLf
+--~----+-------+

N5 N6
+-------+-------+

Revision :t
+-------- - ------+

cooo

COOl

C002

C003

C004

C005

C006

COOl

coos

C009

COOA

COOB

ChecksuM which is the arithMetic
+-- SUM of all b~tes in ROM except

the checksuM b':)tes theMselves.
-+
.. l

I
-·: · .. ·.

+-- Revision date having the forM
DDMMYY where D=da':) digit
M=Month digit, Y=~ear digit

-+ Each a 4 bit BCD digit.
Bit 0 = 0 for COOO-DFFF ROM

-+

+-- Part nuMber having the forM
AANNNNNN, where A's represent

·-- ~ .. ~· .: .. ·. ..

ASCII characters, N are BCD digits.

-+

. .. •. ; ;-~- "":~ ·

www.atarimuseum.com

The forMat of the identification block for the EOOO-FFFF ROM is
as follows:

+--- - -----------+
Dl D2

+-------+-------+
Ml M2

+- ------+~---- --+

Y1 YZ
+-- - ----+-------+

Option b':ite I
+---------------+

Al
+- -+

A2
+---------------+

Nl N2
+---- - --+-- - ----+

N3 NLJ
+-------+-------+

N5 N6
+-------+-------+
I Revision f:
+---------------+
I ROM CkSUM <.1 0) I
+- -+
I ROM CksuM Chi)l
+---------------+

vector table
for NMI, RES I
and IRQ I

+---------------+

FFEE

FFEF

FFFO

FFF1

FFF2

FFF3

FFFLJ

FFF5

FFF6

FFF7

FFF8

FFF9

-+

+-- Revision date having the forM
DDMMYY where D~da'::j digit
M=Month digit, Y='::jear digit

-+ Each a ~ bit BCD digit.
Bit 0 = 1 for EOOO-FFFF ROM

-+

+-- Part nuMber having the forM
AANNNNNN, where A's represent
ASCII characters, N are BCD digits.

-+

+-- ChecksuM which is the arithMetic
suM of all b'::jtes in ROM except for
~~e checksuM b'::jtes theMselves.

FFFA - FFFF This area reserved for the pow~r on
reset vectors, NMI and IRQ vectors.

www.atarimuseum.com

..
·- . ~

APPFN11JX A - AN F.: X AMPI_E OF ~~[YnOARO REASSIGNMF.NT

As suqqpsted earlier in this docuMent, the ke~board

functions May be reassigned. The table below gives the
corresponding ke~s for the Dvorak Calso known as the
AMerican SiMplified) Ke~board. When the t~pewriter was
first invented in 1867, Christopher L. Sholes chose a
la~out for the ke~s which would slow down the good
t~pists of his da~ and thereb~ prevent his Machine froM
JaMMing. This ke~board has endured to this da~.

In 1932, August Dvorak invented this ke~ la~out which
places the Most often used characters, including the
vowels, on the "hoMe" ke~ line and also redistributes
the ke~strokes froM a 60-70% left-hand activit~ to an
alMost 50/50 activit~. Certain Manufacturers currentl~
offer this ke~ la~out as an option. Now ~ou can tr~ it
for ~ourself if ~ou wish. Only the list of ke~
correspondence is given here. It is left to the reader
to coMpose the ke~ function table using the -data
contained earlier in this Manual.

TOP ROW OF HEY BOARD CENTER ROW BOTTOM RO~

Current Dvorak Current Dvorak Current Dvorak

0 ? A A z • •
q / z • ,

w f s 0 X 0
w f

E • D E c J
e •

R p F u v K

T y G I B X

y F H D N B

u G J H M M

I c ., T f w , w

0 R L N • v
• v

p L • s ? ' z • · - s / z ,
1/"1 II II _ <underline)
1/2 , ,

(

..

~

www.atarimuseum.com

APPENDIX 8 - SUGGESTIONS FOR THE CONSTRUCTION OF A NEW
CHARACTER SET FOR THE NEW GRAPHICS MODES

This appendix covers the new graphics Modes 12, 13, 14
and 15 now provided on the A1200. Modes 14 and 15 are
pure graphics Modes with resolutions of 160 b~ 20 and
160 b~ 40 respective!~. Since these are not character
Modes, the discussion below will be liMited onl~ to
Modes 12 and 13.

Graphics 12 and 13 do not produce recognizable
characters, for the Most part, using the standard
character set. One will understand wh~ this is true b~
exaMining the following coMparison between Graphics
Mode 0 to 12 and 13.

Mode 0 is a 40 character Mode. Each character is
forMed out of 8 pixels (sMallest division of the
screen>. Each pixel is 1/2 of a color clock
wide.

Modes 12 and 13 are also 40 character Modes.
However, each character is forMed out of onl~ 1
pixels, with each pixel 1 color clock wide. This
forces the character to be the saMe width as that
used in Graphics Mode 0, but cannot conve~ the
saMe inforMation within 1 bits as with 8 as far as
character recognition is concern~d. <It is
difficult to forM a recogn{zable character in a
four b~ eight dot Matrix).

Lets exaMine how the 1-pixel character is forMed, again -
coMparing the wa~ the 8-pixel character is forMed in
Mode o:

Mode 0 has a choice of two colors for each pixel
<the hardware Manual sa~s 1 1/2 colors, but it is
actually either the color and luMinance of
pla~field 2 if there is a zero bit in the selected
pixel position, or the background color with the
luMinance of pla~field 1 if there is a 1 bit in
the selected pixel position. Therefore each
single bit in the character definition b~te for a
given line occupies a single 1/2-color-clock-wide
pixel position. The character set built into the
OS defines the characters in an 8 b~ 8 Matrix,
with one of the 8 b~tes which Make up the
character selected for each of the 8 scan lines
which coMPrise the character.

(

www.atarimuseum.com

Lets
bits
the

Mode 12 also uses 8 scan lines per character.
However, it uses the character b~tes in a
different Manner. Each of the character b~tes
retrieved b~ the ANTIC is treated as a set of four
two-bit quantities, where each bit pair describes
the color which is to be applied to one of the ~

single color-clock-wide pixels which are part of
the character. Mode 13 is the saMe in its
treatMent of the data b~tes, but each of the
characters is double-length (_16 scan lines instead
of 8) and each data b~te is used twice which
effectivel~ doubles the length of the character.

look at a t~pical character, for exaMple a w. The
which forM a w in the character set are siMilar to

following:

1 0 0 0 0 0 0 1 displa~: X X

1 0 0 0 0 0 0 1 X X

1 0 0 1 1 0 0 1 X XX X

1 0 0 1 1 0 0 1 X XX ~

1 0 1 0 0 1 0 1 X X X X

1 1 0 0 0 0 1 1 XX XX

1 1 0 0 0 0 1 1 XX XX

1 0 0 0 0 0 0 1 X X

<NOTE! This is not the exact representation, but is
used as an exaMple of correct interpretation in Mode 0
and incorrect interpretation in Modes 12 and 13.)

If ~ou view the sahple set of b~tes, each at
consecutive addresses within the defined character set,
it actuall~ looks like a W when ~ou trace the o0tline
forMed b~ the l's in the b~te set, as shown in the
displa~ exaAple to the right of the b~te

representation.

In this Mode 0 displa~, each o~ the 1's would be one
color, and each of the zeros would be another color,
assuring a readable displa~.

For the Modes 12 and 13, the four (not 8) pixels are
controlled as follows:

If two-bit value is!

00
01
10

11

11

Then the pixel color is:

the background color
the pla~field 0 color
the pla~field 1 color

the pla~field 2 color
(if bit 7 of char~O>

the pla~field 3 color
(if bit 7 of char=l)

l

' f

www.atarimuseum.com

For the exanple shown, then, the ~th line froM the
bottoM would displa~ a 10 10 01 01 or 1 pixels of
pla~field colors 1, 1, 0, 0 in a row, if the standard
character set is used. And the bottoM-Most line would
displa~ pla~field colors 1, BAK, BAK, 0 in a row. As
Ma~ be iMagined, difficult to recognize such a
character. <This character is a Mirror iMage left to
right - nons~MMetric characters would be even More
difficult to recognize.)

To build a character set for these Modes 12 and 13,
then, it is suggested that ~ou build each character as
double wide, to allow a total of 8 pixels (b~ 8 lines)
to define the character. This would also Mean
asiigning two character set locations for each
character and treating each character printed in these
Modes as two characters to be printed. For the exaMple
of the W, the character set Might look like this:

B~te set 1: B~te set z:

10 00 00 DO 00 00 00 10
10 00 00 00 00 00 00 10
10 00 00 10 10 00 00 10
10 00 00 10 10 00 00 10
10 00 10 00 00 10 00 10
10 10 00 00 00 00 10 10
10 10 00 00 00 00 10 10

---10 00 00 00 00 00 00 10

B~te set 1 Ma~ represent ATASCII value hex 57 within
the new character set table, and set 2 Ma~ be at
ATASCII value hex 07 (hex 57 plus hex 80) if desired.
You Ma~ ~eel free, of course, to assign ~our character
sets in an~ Manner ~ou desire.

·Therefore if ~ou would print these two characters side
b~ side on the screen, it would becoMe effective!~ a 20
character per line Mode, with the resultant tO
coMbination treated as the 1-bit in the Mode 0 exaMple
and the 00-coMbination as the O-bit in the Mode 0
exaMple, forMing a recognizable W in the process.

Note also that ~ou Ma~ want to design these new
character sets in a 7 bY 7 Matrix starting the upper
left hand corner of the bit-pair set to allow at least
one blank row and coluMn between each of the new
characters. <This ~.Jas not done in the exaMple).

Thus Man~ coMbinations of colorful characters Ma~

forMed using this technique, allowing the user of
A1200 additional flexibilit~ for his prograMs.

be
the

(

..

www.atarimuseum.com

APPENDIX C - SERIAL BUS PERIPHERAL HANDLER LOADING, LINKING, USE

Thi~ appendix contains technical detail~ regarding the serial
device handlers. It is not written for the general user however
contains information essential for use by a developer of peripherals
for the A1200 system.

A1200 HANDLER LOAD AND RELOCATION DURING POWER-UP PROCESSING

[Note: The loading procedure described here is also used to load
handlers when the loading is application-specified after power-on has
completed. The only differences are where in RAM the handler is
loaded, and handling of loading errors. Accordingly, this single
section deals with both loading operations. The maJor point of view
is toward loading at power-on time to the MEMLO boundary; differences
for the application-initiated load are noted. See section titled
APPLICATION-INITIATED LOAD for more on this subJect. J

After a peripheral responds to the Type 3 Poll, the OS will then
compare the sum of MEMLO (02E7 and 02E8 hex) and the size of the
handler to be loaded CDVSTAT and DVSTAT+l, 02EA and 02EB hex) to
MEMTOP (02E5 and 02E6 hex) to determine that there is room to load the
handler. If there is insufficient room, the handler will not be
loaded, and the OS issues a Null Poll command (section on A1200
POLLING DURING POWER-ON) and proceed with further Type 3 Polling
<POWER~ON ·COLD STARTstep 9).

Otherwise the peripheral handler is loaded, starting at MEMLO and
proceeding until the load is completed. _ <Note: the load address may
also be application specified; see section on APPLICATION-INITIATED
LOAD.) The loading operation is .achieved using the Operating System's
relocator (see Appendix D>. A call to the relocator is made,
specifing all parameters needed:

o Loading address. This is either a copy nf MEMLQ, or the
application-supplied load address. Be;or~ handing this value to
the relocator, the OS Type 3 Poll process insures that it is
even-valued by adding one if it i~ found to be odd; <Note:
a "Bug" exists in the 6502 processor where a JMP indirect
instruction will fail if the two-bvte indirect pointer is
relocated across a page boundary. This may be avoided by
placing all indirect pointers on even addresses1 since
loading always occurs on even boundaries, the pointer will
never cross a page boundary.

o Zero-page loading address . The handl~r will not load into page
zero. This address is set to 80 hex1

o Address of get-byte subroutin~ described below.

1

www.atarimuseum.com

The get-byte subroutine supplied to the relacatar calls on
SIO to get the handler relocatable abJect records from the peripheral
and then pass them a byte at a time to the relacator. The records
is read from the peripheral in numbered blocks of 128 bytes
e a c h, numb e r i n g s tar t in 9 a t 0 and g o i n g a s h i g h as n e e de d (2 55 ma x) .
The cassette buffer is used for storing each black as it is
being fed to the relocator. The final block may be unfilled;
get-bytes will stop from the relocatar when the End record is
processed, so the remaining portion of that block is ignored.

Serial port lead commands are as follows:

o Device address ta(en from Pall response;

o Load command "&u <26 hex, 038 decimal);

o Auxl = block number to be loaded;

o Aux2 =undefined (must be ignored by peripheral);

o Appropriate checksum.

If the peripheral is asked to supply a block whose number is out
of range, it will either NAK or nat respond <preferable action is no
response). The reader will then p~ss error status to the relocator
which will pass the error on to the caller. At power-on, the caller
is the OS Type 3 Poll routine, which responds to the error by
ignoring this peripheral and continuing polling for other peripherals
When loading is being called by an application, the IOCB is closed and
err or 133 (De vi c e No t 0 p e n) i s r e t u r n e d- to t h e a p p 1 i c a t i on.

During cold-start processing. the OS ignores all parameters ~
returned by th~ relocator when relocation completes except the error.
status. All relocating loader errors produces the results of the
preceding paragraph.

No check will be made that the handler is actuallv relocated properly.
Some errors will be detected b~ the relocator; however it is the
responsibility of the peripheral desipner to create a proper device
handler.

The hondler rnu£t occupv contiruous RAM, stcrtinp ~t the lo2d ~ddress.
No restriction is placed on the use of this RAM are~ <it mav be code,
variables. or data) except that the liniage conventions (section on
INIT. AND LINKINQ DURING POWER-ON> must be followed.

When loaded under applications re~uest, the size of the area allocated
for the handler can be larger than the minimum re~uired, and the
handler mav make use of thi~ extra RAM as needed (see section titled
LOAD,RELOC.,INIT. ,USE). ~hen loaded at MEMLO during power-up, the
handler will specify its RAM needs {section on INIT. AND LINKING
DURING POWER-DN and section titled SYSTEM RESET REINIT).

2

www.atarimuseum.com

A1200 INITIALIZATION AND LINKING DURING POWER -UP PROCESSING

(Note: The handler initialization and linking procedures during
power-up processing are ver~ similar to those during warm-start
reinitialization and application-initiated handler loading. Therefore,
this section serves for all processes. It is written in terms of the
power-up se~uence, with occasional test conditions for the warm-start
variations. The maJor differences in this procedure between power-up
and warm-start are described in section titled SYSTEM RESET REINIT.
Application-initiated load is described in section titled
LOAD,RELOC . , INIT. ,USE. J

Once loaded, a handler will be linked into the system in three
ways:

o The handler's RAM usage will be declaredJ

o The handler's name and linkage table address will be entered
into the handler table;

o The handler's linka~e table will be entered into a linked-list
of known loaded handlers for System Reset (warm start
reinitialization).

3

www.atarimuseum.com

The handler will have a linka9e table at its load addres~. This
table contains the following:

OFFSET CONTENTS

0 14 Standard handler entry vectors <reference A>:

OPEN vector1

CLOSE vector1

GETBYTE vector;

PUTBYTE vee tor;

GETSTAT vee tori

SPECIAL vector;

initialization code JMP;

1:5 Linkag@ table checksum;

16 17 Handler size in bytes to add to MEMLO.

18 ·19. Handler linkage table chain forward pointer;

20 21 Zero {reserved for ~uture expansion).

Byte 15 (checksum) is calculated such that the wrap-around-carry
sum of bytes 0 through 17 is FF hex (one's-complement negative rZero);
it is used by the operating system to check the integrit~ of the
linkage table during system reset (warm start) reinitialization. Since
bvtes 0-17 may vary depending on load address the chec~sum will be
calculated after the handler is load~d. B~tes 18-19 point to the
handler linkage table loaded next. If this is the la~t handler
loaded, this forw.ard pointer is null (zero).

4

www.atarimuseum.com

The initialization process for a newlv loaded handler immediately
follows it~ loading:

[Note: All steps of this process are performed by a subroutine
which is normally used as part of the OS process of linking new
handlers into the system. This subroutine can be called by other
system routines; the calling sequence is discussed in section titled
SUBROUTINE INTERFACES. As used during power-up loading of handlers
following Type 3 Polling, the MEMLO par a meter used in step 4 is set
on, indicating that the handler's size is to be added to MEMLO. J

1. The OS adds the new handler lin~age table at the end of
the lin~age table chain. This is done bv starting at the head
of the chain, CHLINK (in the OS database) and following the
pointers until a null (rero) pointer is found. For each
linkage table in the chain (except the last), the checksum is
checked to verify the integrity of the linkage table; checksum
failure results in failure to initialize the newly loaded
handler, and the rest of this initialization procedure is
bypassed. No error is reported out of the OS during coldstart
(in thi<a case, polling continues with a Null Poll, followed by
Type 3 Poll, POWER-ON COLD START step 9). In the case of a
non-05 caller, the error is indicated to the caller by
returning with carry bit set. If the checksums are OK, the
address of the new linkage table, which is the load address of

· the handler, is placed in the null pointer which was at the
end of the chain. Then the pointer in the new linkage table is
nulled (zeroed);

2. The OS loader will then JSR to the handler initialization
code; ..

2a. The handler will initialize itself, optionally utilizing the
handler table entry subroutin~ in the resident OS (section
titled SUBROUTINE INTERFACES>. Errors occurring in the
linking proces s ~ill produce linking failure (discussed
below). The h~ndler will initialize itself a» follows:

2b. Cell the OS-resident handler tc::ble entry subroutine to add "
handler entry for this new handler;

2c. Op~ion -::- llt] c stc bli s h the lint .:: :::'e: t2blc: h <:.ndlc:r c::ize. The..
handler ~ize could si Qply hLvG be e n loaded into the lint~ge:

table at relocation time, in which case the handler
initialization procedure now takes no further action.
Alternatively, the handler can calculate the ~ize and in•ert
the result during this first initialization. The handler will
calculate this size onl~ once, and supply the result to the
operating system in the linkage table at this point during
power-up initialization. The handler will not modify these
bytes in the linkage table at any subse~uent time. The OS
fla9 ~ARMST can be used to distinguish power-on initialization
from subse~uent warm-start reinitialization. The handler size
need not be returned to the OS if WARMST is nonzero. If the

5

www.atarimuseum.com

handler calculates its RAM needs, it i~ re£ponsible for
inswring that the resulting addition to MEMLO does not exceed
HEMTOP. Also, it is the handler's responsibility to ensure
that the size set by the handler is even-valued. It is safe if
the calculated size does not exceed the size reported by the
T~pe 3 Poll (section on PERIPHERAL POLL DURING POWER-ON);

2d. Return with Carry bit clear if there was no init errors
otherwise, return with carry set;

<Note: the hand 1 e r in it need not save any 6 502 reg is t e r s.)

3. If the handler initialized unsuccessfullv (Carrv returned set)
the new handler lin~age table is removed from the
lin~age table chain using the routine described in section
titled SUBROUTINE INTERFACES for that purpose, and the handler
installation is terminated. In this case, none of the
following steps is performeds no error indication is given out
of the OS during coldstart, and polling continues with a Poll
Reset followed b~ further Type 3 Polling. In the case of a
non-OS call to this initialization process, the error is
returned to the caller by returning with the carr~ bit set.

4. If the handler initialization was successful <Carry returned
clear) th~ OS will then check the parameter to see what mode
of initialization is being performed, to determine whether or
not the handler size should be added to MENLO. If the
parameter is set, then the handler size should be added to
~IEMLO. If the parameter is not set, the handler size should
nat be added to MEMLO. In the 1 at t e r c a~ e, the hand 1 e r s i z e
entry in the handler lin~age table is cleared to zero1 ...

5. The handler size is added from the handler linkage table to.
MEMLO (02E7 and 02E8 hex)J

6. The linlege t~ble chec~sum is c~lculated ~nd inserted
into th~ t~ble. This is done b~ first zeroing the checrsum1
then c2lculatinr the chec~sum of the fir~t 18 b~tes of the
table; then storing the one's complement of the resultinp ~urn

as the calcul~ted chec~sum of the linkape table.

In step 2, 2bove, the h2ndler may interrogate the ~~stem flag
WARMST to determine the time of initialization. WARMST (0008 hex)
is zeroed by the OS at the beginning of power-on processing.
Unless modified bq other ~ode in the system, WARMST remains zero until
the [SYSTEM.RESETJ ~ey is pressed, when it is set to FF (hex). Should
thi~ be unacceptable to the handler initializ~tion, the handler should
keep an internal variable to keep track of which initialization is
occurring.

Handler table overflow error is a possibility in step 2b, above.
The handler should return with Carry set to indicate initialization
failure, unless it perf-o,rms some reason2ble error recovery.

6

www.atarimuseum.com

Note: The above procedure use» DVSTAT+2 and DVSTAT+3 (02EC and
02ED hex).

7

www.atarimuseum.com

Al200 APPLICATION-INITIATED LOAD

Most of the loading and initialization processes of an
application-initiated load are identical to those used for power-up
load. Those differences between the two <MEMLO handling) which affect
the handler are discussed in section on !NIT. AND LINKING DURING
POWER-ON. The maJor difference lies in the polling processes used.

A1200 APPLICATION-INITIATED OPEN POLL (TYPE 4)

When an application calls CIO to perform an open. the following
occurs:

1. The OS flag HNDLOD {02E9 hex) is interrogated to
determine whether the application desires a Type 4 Poll for
the device being opened. HNDLOD=zero means conditional poll
(step 3); anything else means unconditional poll (step 2);

[Note: the operating system sets HNDLOD zero at power-on
and system reset. If the application does not modify HNDLOD,
conditional poll will always be selected by anv OPEN. J

2 . . If unconditional poll is selected, a Type 4 Poll {see below)
occurs. I-f no peripheral answers, step 7 is performed. If a
peripheral answers, its 4-byte answer is returned bv CIO to
the upplic~tion in DVSTAT through DVSTAT+3 <02EA through 02ED
hex) (proceed to step 6);

3. If conditional poll is specified, CIO chec~s for the device in ..
the handler table. If an entry is found, the handler already
exists and normal open processing continues. Proceed to step
5;

4 . If con c'i tional poll is specified and no h.::;ndlc:r cntr!J i~

found, <:. Tt.' pe 4 Poll is issucci. Evert}th ing proceed~ from hc:re
2 s in : t::: n 2;

5 . If' no r> o l 1 u<::. ~ i -:::sued, t hi ~ f <J c t is f 1 <- !1 f1 eo to the c 2 11 in r
.:_~· ~li c ..: · ·~:~ n Ut_' ~~-(;~in~ D\.:S l / ·.T ~-nC D\/ ST?-\ T +1 C02E(; <-. n ~; 02E :1 h e:: :·
to zero. I/0 status returned indicates either -.;uccess f ul O?C:1 ~ ,

or open failure for ~n~ of the st ~ ndord set of possible
reasons;

6. If a poll was issued and successful. the IOCB is
"provisionally" opened. This includes .:!ll normal CIO OPEN
processinQ• but includes none of the handler open processing
since the handler is not loaded at this time. The IOCB is
marked ~provisionally" open in the following wavs:

o The handler t~ble pointer !CHID is set to 7F (hex);

8

www.atarimuseum.com

o T h e p u t a d d r e s s I C P TL. I CPT H i s s e t p o i n t i n g to t h e
OS-re~ident application loader routine/

o ICAX3 contains the device name for the handler loader table1

o ICAX4 contains the device serial address for loading.

Normal status (01) is returned following a provisional open,
and DVSTAT through DVSTAT+4 (02EA through 02ED hex) contain
information needed by the application to provide RAM for the
handler load which will follow (see below);

7. If a poll was issued and no device answered, the IOCB is not
opened and error 130, Non-existent Device, is returned.

The OS flag HNDLOD <02E9 hex) is set to zero each time CIO
returns to the application, regardless of what call was made or the
results of the call.

9

www.atarimuseum.com

Al200 LOAD, RELOCATION, INITIALIZATION, USE

Following a "provisional 11 open the application must check the
DVSTAT bytes to determine the need to allocate an area for the handler
which is to be loaded. The application must set aside an area, on an
even address, at least as large as the handler size specified in
DVSTAT and DVSTAT+l {02EA and 02EB hex>. Then the application must
place the address of this area in DVSTAT+2 and DVSTAT+3 <02EC and 02ED
hex) and the length of the area in DVSTAT and DVSTAT+l {02EA and 02EB
h e X.). - . . (T h ~ ~p p 1 i C a t i on m a IJ. a 11 oca t e t h e m i n i mUm a r e a : b 1J 1 e a Vi 11 g . · ·<
DVSTAT and DVSTAT+1 alone.) If the even starting boundary cannot be
assured bv the application, it must allocate one more byte than it
reports in DVSTAT/DVSTAT+l. The application signals the completion of
these steps by setting the flaQ HNDLOD <02E9 hex) nonzero.

The handler load occurs automatically when the application
calls CIO to perform any I/0 operation except CLOSE via the
"provisionally" open IOCB, when HNDLOD is nonzero (the CLOSE command
will simply close the IOCB without loading the handler>. The steps
taken by CIO is as follows:

L The IOCB is checked to see is it is provisionally open. If it
i s not, n or rna 1 I I 0 pro c e s s in g c on t in u e s;

2. If the IOCB is provisionally open, the flag HNDLOD is checked.
I f t h e f 1 a g i s z e r o, error 1 30, Non-e x i s tent De vi c e, i s
returned;

3. If the IOCB is provisionall!J open and HNDLOD is nonzero, the
handler is loaded (using the procedure of section on HANDLER
LOAD AND RELOCATION DURING POWER-UP> and linked (using the ..
procedure of section on INIT. AND LINKING DURING POWER-ON>.
Prior to the load, the load address in DVSTAT+2 & DVSTAT+3 is
forced even. The initialization process is called with the
MEi~LO p2.r2:71etc:r off, indicatinr that the hendler size is not
c, d de o to l-'i E::iiLO;

4. If the loudin2 or initiblizction f~ils, thE IOCB is closed an~
e r r o r 1 3 0, l-(o n- e r i s t E n t D c v i c c , i f. r c· t u r n 2 (; ;

5. If: the lo <-Cing ~ nd initi t liz(:tion ~uccer::ds, the IOCE i:
modified to indicate it is properlv op~nL(:

o Handler ID, ICHID, is set to point to the proper handler
table entry. If the entrv is not found, error 130,
Non-existent Device, i~ returned, and the IOCB is closed;

o Normal CIO OPEN processing is performed, thus filling the
I 0 C B p r o p ~ r 1 CJ , i n c 1 u d i n g t h e p u t '" d d r e ~ s I C P TL, I C P TH w h i c h
is set to point to the handler put-byte entry. Additionally,
the handler OPEN Gntry point is called by CIO.

6. CIO completes processing of the I/0 command originally called
by the app l ic.:;tion.

10

. .' ..

www.atarimuseum.com

(Note: it is extremely important that the application nat modify
the handler once it h~s been loaded. Users of high-level language~

such as BASIC or PASCAL must remain aware of how the language
environment, par t i c u 1 a r ly the 1 an g u age memory us~ f) e, rna y a f f e c t the
handler. DOS 2 users must be aware that the DUP overlavs memory which
could contain I/0 handlers. [SYSTEM. RESETJ "uses" loaded handlers via
the process of reinitialization; therefore, system reset processing
could fail if any loaded handlers have been modified. Also note that
unpredictable results will occur should the handler be loaded more
than on ·ce - b 1J · an a p p 1 "i c.;, t i on. J · · -- · · : "': ···.. '; · . . - · :· ,

11

www.atarimuseum.com

A1200 SYSTEM RESET <W ARM START) REINITIALIZATION

This section describes the se~uence of events taken by the
operating system during system reset <warm start> reinitialization.
This consists of actions which have existed in the 400/800 revision E
operating system plus new operations which are the A1200
enhancements being described in this document. Only that degree of
detail needed here is included.

l. .. · The OS se.ts .. th~-warm. st.art ' flag WARMST (0008 hex) · to FF· .
hex;

2. Certain variables in the OS database are cleared to zero.
outside the OS database is left untouched . In particular,
handler table and all IOCB's is zeroed;

RAM
the

3. MEMLO (02E7 and 02E8 hex) is set to 0700 hex;

4. OS resident handlers is initialized and entered into the
handler table;

5. The application cartridge "A" is initialized, if
present;

6. Cassette or di~k initialization occur~ <CASINI or
DOSINI>. At ~his time, the DOS updates MEMLO by adding its
s 1 z e; .s n d .any · hand 1 e r s w i t h in the DOS are in i t i a 1 i zed and .
entered into the handler table;

7. Upon return from the cassette-booted or disk-booted
reinitialization, the operating system will reinitialize all
handlers which have been loaded into RAM. The procedure i~
described in detail below;

B. The OS will s t a rt the c ~ rtridge or JUmp through DOSVEC.

To perform th~ initi c liz2tion of loaded h2ndlcrs <st 2 p 8 ~b o vG),

~he oper2ting s~stem will proce e d 2s follow~:

1. The in t~ rn~l pointer CHLINK is chcctEd to see if ~ nu h ~ n~ler ~

hz v c been ~ C i~ : C . Thi~ po i~ t c r i ~ n ul l {~ e re) if thc r ~ i~ r n r
loaded handlers, or it point~ to the linkaQ~ t~ble o f ~h~
first such handl~rl

2. If a loaded handler exists, its linkage table checcsum is
calcula~ed and chec~ed_ If the sum is not two's-complemcnt
zero, the handler has been destroyed and this portion of the
OS initialization terminates (no ~rror is reported);

3. If the linkage table checksum is OK, the handler is re-linked
and re-initialized according to the procedure of steps 2
through 6 of section on !NIT. AND LINKING DURING POWER-ON; the
MEMLO parameter is set on so that the handler size will be
.::; d 6 e d to :..o; :::::MLO;

12

www.atarimuseum.com

4. If an error occur~ while re-initializing the ha ndler, thi~

portion of OS initialization is terminated (no error is
reported)J

5. The forward pointer for the handler linkage table chain in
this handler's linkage table is checked. If it is null
(zero), this phase of initialization is complete. If it points
to another handler, steps 2 through 5 are repeated for each
handler in the chain.

·,. -.. ' . .

J

13

www.atarimuseum.com

A1200 SUBROUTINE I NTERFACES

Three subroutines are added to aid the initialization process for
loaded handlers. The first searches the handler table for an empty
slot and makes the entry for the handler. The second follows the
handler linkage table chain to remove a handler from the chain. The
third performs initialization processing for a loaded handler.

All three . routines a_r e c_all ed . vi a. _JS~ to . the ap prep ria te entry
vectors Cbe.low>. All . parameters are! passed· 'throu.gh the machine .
registers.

The entry addresses for these routines is as follows:

E489 hex Handler Entry Routine

E48C hex Handler Lin~age Removal Routine

E48F hex Handler Initialization Routine

.· ·• .· . :· ... ·'. -::.

14

www.atarimuseum.com

HANDLER ENTRY ROUTINE

Parameters for this routine are provided in the machine registers.
The routine is written for use by the OS handlers.
The parameters it uses are passed as follows:

.. · .. ·· · ·. • . . ~ . . ·. ··. ~ .

A: High byt~ of linkage table start addressJ

Y: Low byte of lintage table start address.

"7" . ·: •· • •

This routine searches the handler table from start to the first empty
slot. If no empty slot is found <the table is full), the carry is set
on return to the handler to indicate an error. If a duplicate handler
name is found, a different error is returned {also see below>. If
neither of these error occurs, the handler entry is inserted into the
table at the first empty slot.

If the entry was successful made, the Carry bit is cleared on return
to the handler.

If the_h~ndler table is full, error retur~ is indica~ed by setting the
carry bit. This error is distinguished from the duplicate-entry error
by also ._etting the Negative bit. The registers are undefined when
this return is made. The handler should not proceed with
in it ia 1 i za t ion; see section on INIT. AND LINKING DURING POWER-ON.

If there is a duplicate handler name in the table, the condition is
indicated to the calling handler by returnin~ with Carry set and
Negative clear. In this case the A and Y registers are returned to
the handler unch~nred from the call, and the X register is an offset,
relz.tive to the first bvte of the h~ndler table, pointing to the
second b~te of the 3-bvte table entrv where the matchinQ device name
was found. The h~ndler has the choice of discontinuing
initi~liz~tion, repl 2 cin2 the older handler entrv, or ch~ining itself
in <replacing the old entrv but saving it in order to c2ll the older
handler whenever an I/0 call belongs to the older handler) .

15

. · :.. ·

www.atarimuseum.com

HANDLER LINKAGE RE MOVAL SUBROUTINE

fhis routine undoes the handler linkage performed by the HANDLER
ENTRY routine. Its parameters are also passed to it within the
machine registers. The parameters re~uired are as follows:

.·,A: High byte of address of handler linkage table;
. :·. · . . · . . •· · . . . ; .. ··· ·

.'. ~ . . •

V: Low byte of address of handler linkage table.

This subroutine searches the handler lin~age table chain for the
linlage table having the address passed in A and V. The linlage table
checksums is computed and checked along the way to verify the
integrity of the chain. When the proper lin~age table is found, the
handler size is checked to determine whether or not the handler was
loaded at MEMLO. If the handler size is nonzero, the handler was
loaded during power up at MEMLQ, and it is illegal to remove it. In
this case, the subroutine returns with the Carry set. Otherwise, the
linkage table is removed from the chain by copying its forward chain
pointer contents into the forward chain pointer of its predecessor in
the chain.

If the chain search terminates either by finding the end of the chain
(null pointer) or a bad . linkage table, no action is taken and the
Carry bit is returned set to indicate the er~o~. Carr~ is cleared to
indicate that the table was found and removed. The other registers are
undefined upon return.

This subroutine is supplied to allow an application to re~uest removal
of a previously loaded handler when it is no longer needed or w~en the
RAM must be reclaimed. It is su~gested that the handler CLOSE routine
c he c l: the f 1 a g HNDLOD (02E9 hex) ; it ma 1,1 be set nonzero b 1J the
Lpplic~tion before CLOSE to indic2te that the 2pplication wishe~ the
h~ndler unlo2ded. The h ~ ndler is responsible for r e ruovinr itself when
u n lc~ci np i~ rc~uested: the handler table entr~ should be deleted,
end the linr.2ge t 2 ble must be removed from the ch~in. The IOCB bvte
ICHID rn a ~ b~ u s e d ~o find th e handler table entry, 2 nd this subroutine
is useod to rc.,move the link from the chuin . (Note: The OS variable
COLDST is interro~ated by this routine to determine when the caller is
the operating system itself at cold start time. In this case, the
h a ndler is unlinked even though it is loaded at MEMLO. J

Note that, except .as described in the paragraph above,
must NOT remov~ itsel~ if it has been loaded at MEHLO.

the handler
This is the

reason that this subroutine checl:s the handler size Tor
application-loaded handlers. If the handler receives error status
from this subroutine. it should NOT remove itself from the svstem
{except it is still permissible to remove the handler table entry).

Handler table removal is done by zeroing the device name byte in the
h an d 1 e r t a b 1 e ..

16

"': ~ ,._ -.. ~ . •• -:~ «..

www.atarimuseum.com

INITIALIZATION SUBROUTINE

An INITIALIZATION subroutine entrv point is included in the OS to
provide the handler initialization function to be easily performed
when handlers are loaded by a non-OS routine, for example by
AUTORUN. SYS.

The INITIALIZATION subroutine performs all the tasr.s (steps 1-6)
··{or initfalfzafiori. descrfbed in ·section on INIT. '·· AND LINKING DURIN~

POWER-ON. This routine reQuires the followinQ parameters to be passed
to it in the machine registers:

A: High byte of address of handler lin~age table;

Y: Low byte of a_ddress of handler linrage table.

In addition. the Carry bit must be set by the caller to indicate
whether the handler size should be added to MEMLO: Carry set on means
the subroutine allows the adding of the handler size to MEMLO.
Carry clear means the handler size is zeroed, thus suppressing
its addition to MEMLO.

This subroutine returns to its caller with the Carry set if a
linking error occurr e d (and the linking is not performed). Carry will
be clear if linking was successful.

17

. :.: .

www.atarimuseum.com

APPENDIX D - RELOCATING LOADER

,AL2oo
· The ~~"f.;:. :, Operating System ROM includes a subroutine which can be
used to load certain types or obJect code.

Due to the limited amount of space available in the OS ROM, only a
limited amount of error checking can be done. Therefore, a strict set
of ~ules has been established for the format of obJect code which can
be relocated using the facilities of this built-in loader. If the
format is not properly followed, you will obtain unpredictable
results. Thi5 leader i5 not accessible to user programs. It is only
described here to provide peripheral designers with data appropriate
for correct structure of the handler obJect code.

FORMAT OF THE LOADER PARAMETER BLOCK

Before executing the relocating lo a der subroutine, the OS provides
the loader with certain information. This is a . t~ble of data located
at hexadecimal 02CF within the OS RAM area. A. total of 5 bytes of
data must be provided. They are organized as shown here:

+-------------------------+
low byte I GETBYTE ADDRESS $02CF

+ +
high byte

+-------------------~-----+
low byte LOAD ADDRESS $02D1

+

+-------------------------+
one byte ZLOAD ADDRESS $0203

+-------~-----------------+

The interpretation of the bytes in this table is as foll ,ows:

The GETBYTE address is a two byte address of the entry point for the
Get Byte routine. This may refer to an existing CETBYTE

routine for a peripheral already supported with coresident code.
SUBROUTINEu below.

The LOAD ADDRESS parameter speci~ies the base address from which the
c~lculation of actual obJect code placement and cro~s reference will
be made. For erample, if the! relocatable obJect code was all
a5sembled to be r@located ~ith re~pect to its own location 0000 and
the LOAD ADDRESS ~pecifies 00 (low byte>. 90 (high byte), then the
code will be loaded beginning at $9000. All relative relocatable
address references will then be changed to reference the new code
location at $9000.

18

www.atarimuseum.com

The ZLOAD ADDRESS is a one byte zero pa9e address which is used as the
base address for the relocation of any zero page references used in
the relocatable code. Any references to page zero variable• are
adJusted during relocation by adding thi» ZLOAD ADDRESS as an off»et
to the relocatabl~ address. This forms the actual load address for
the variable and it~ references.

LOADER-TO-USER PARAMETER BLOCK

Before the OS called the loader routine. it had to provide a block of
parameters to give the loader various information. The loader, in
turn, provides a return set of parameters.

These parameters will allow the OS to determine where the next
relocatable subroutine may be loaded, if desired, to allow a seq,uenced
loading of many such routines. It also provides you with the absolute
RUN address once the relocation has taken place to allow a JUmp into
the now resident routine.

Here is a diagram showing the way the table appears in memory. It
begins at hexadecimal address $02C9.

low byte

high byte

low byte
:~
-- high byte

one byte

+-----------------------+
I RUN ADDRESS
+ +

+-----------------------+
HIGH USED ADDRESS

+ +
I -
I

+-----------------------+
lZpage Hi Used Addres~
+------------------~----+

$02C9

$02CB

$02CD

RUN ADDRESS is the execution entry point. It has been calculated
by the Loader as the absolute address which was specified from the
data in the END record. .If the RUN ADDRESS is zero, then you did
not specify a run address in the END record. <Record structur@
is covered in the next section) .

. , ~t:rr~,~-- • ·:_~- ::-G~~t;

~.:_-. - ~ - ~ :. c=._ rt: • . ,-~~(e:.nG

HIGH USED is the address of the next available memorv location
above that which has Just been u~ed by the loader. I~ there are
multiple relocatable routines to be loaded, the information in the
low and high bytes of this parameter may be moved directly into the
User-to-loader parameter block to direct where the NEXT routine
is to be loaded. The equivalent locations within that parameter
block are $0201 <low byte) and $0202 <high byte) of the LOAD
ADDRESS.

19

www.atarimuseum.com

Zpage Hi Used is the address of the next available zero page
memory location above that which has JUSt been used by the loader.
If there are multiple relocatable routines to be loaded, the
data in this parameter may be moved directly to location $02D3,
the ZLOAD ADDRESS. This allows a chain of relocatable files to
dynamically configure themselves in the memory using the loader's
output as the input of the next loader call.

RECORD STRUCTURES

The relocatable obJect file consists of a se~uence of one or more
segments . An obJect segment consists of a single TEXT record
followed by one or more INFOR~~TION records. The format of the
TEXT and INFORMATION records is discussed in the sections which
fo 11 ow.

The Loader processes the data obtained by the GETBYTE routine
as obJect segments . The TEXT record is a se~uence of machine
instructions and data. The INFORMATION record(s) associated with
each TEXT record specify exactly which of the bytes within the
TEXT record will have to be modified in order to relocate the
code to its intended location.

The relo~ation process be~ins with the Loader taking a TEXT record
and loading it into the memor~ area at the absolute address calculated
from the load address provided. <There may be many TEXT
records in any single relocatable obJect file). Then the loader
reads the next record to see if it is an INFORMATION record. An
INFORMATION record will show the loader -which bytes in the loaded
code will have to be modified. If there is no INFORMATION reco~d
associated with this TEXT record, no modification takes place.

This will occur if you have written the machine code to.be fully
relocatable ... that is, no matter where in the memory it is placed, it
still will execute the same function. It would also occur for TEXT
segments containing strictly data, when it doesn't matter where the
data resides as long as it can be refere.nced. Such a code segment
might be one containing an alternate character set or such data.

If the TEXT record does include address references ~hich must be
relocated, the INFORMATION records which cause the modification
must immediately follow that TEXT record in the ~ecord ~roupin9.
You may therefore consider one TEXT record and a number of
INFORMATION records as though it is one complete segment.

The entire relocatable file processed bv the Loader will consist
of any number of TEXT/INFO record groupings, then a final record
known as the END record. The record file beg ins with a TEXT
record and ends with the END record. The Loader exits to the
calling routine immediately after the END record has been processed.

RECORD FORMAT DEFINITION

20

www.atarimuseum.com

The loader expects the input records to be formatted in a specific
manner. The individual formats for the TEXT, INFORMATION, and END
records are given below. The common element between them is the
fir~t byte of the record, which specifies what type of record is
to be processed. The first byte of the record is known as the
Type ID. As a summary, the various Type !D's associated with each
record type are as follows:

TYPE ID

00
01

02

03

04

OS

06

07

08

09

OA

OB

RECORD TYPE

TEXT
TEXT

INFO

Contains Non-zero-page Relocatable Text
Contains Zero-page Relocatable Text

Points to non-zero page low byte references
to non-zero page data in a text record

INFO - Points to zero page low byte references to
non-zero page data in a text record

INFO

INFO

Points to non-zero page single byte reference
to zero page address within a text record

Points to zero page one byte reference to
zero page data in a text record

INFO - Points to non-zero page word references to
non-zero page data in a text record

INFO - Points to zero page word references to
non-zero page data in a text record

~

INFO - Points to non-zero page high byte references
to non-zero page data in a text record

INFO - Points to zero page high byte reference to
non-zero page data in a text record

TEXT Contains absolute, nonrelocatble obJect code

END Is an END record

All of these various record types and pointers are illustrated by
example in the sections on TEXT RECORDS, INFORMATION RECORDS and
END RECORD below.

21

www.atarimuseum.com

TEXT RECORDS

\ TEXT RECORD is a group of b~tes containing machine language
instructions and data. It will be loaded intact to a specific
area of memory, then the Loader will modif~ some or none of the
bytes AFTER placement into RAM according to instructions provided
in the INFORMATION 1ecords which immediately follow this TEXT
RECORD.

There are three types of TEXT records which may be specified:

A. A record containing non-zero page relocatable text. This is
data which is loaded into an area in an area other than zero
page ($0100-SFFFF> somewhere and whose address references
must be modified to reflect the actual area into which it,
and its corresponding zero page segment, have been loaded.

B. A record containing zero page relocatable text. This is
data which is loaded into an area within zero page {$0000-
$00FF) somewhere and whose address references must be modi
fied to reflect the actual area into which it, and its
corresponding non-zero page segment, have been loaded.

C. A record containin~ Absolute text. This type of data
-does nat need anv adJustment to its address references.
A TEXT record of this t~pe will not hav~ anv INFORMATION
records following it. <INFO records specifv the
relocation data and this type of text does not need any.)

TEXT RECORD FORMAT

Here is a representation of the content of the typical TEXT record:

+------------------------------+---------------/ /---------+
TYPE :" Length Relative Address ObJect text

ID or
Absolute Address

+------------------------------+---------------------------+

high byte

1 byte 1 byte 2 bytes 0-253 bytes

The TYPE ID field ~or a TEXT record will contain one of the ~nree
following values. For ~ complete description of the meaning of each
record type, _ see TEXT RECORDS above.

VALUE TYPE OF TEXT RECORD

22

www.atarimuseum.com

00 Non-zero page relocatable text
01 Zero page relocatable text
OA Absolute text

The LENGTH field for a TEXT record will have a value from 2 to 255.
It is computed as the total count of bytes contained in the record
counting from the first bvte following the Length bvte to the end
of the record. <A complete text record therefore can consist of
a minimum of 4 bytes, to a maximum of 257 bytes>.

The ADDRESS field specifies either an Absolute or a Relative Address.

If it is an Absolute Address record type, the obJect text contained
in this record is to be loaded to memor~ at t~e starting address
specified in this absolute address field. Each byte in the text
is then to be loaded into the next higher address until the
entire record has been loaded.

If it is a Relative Address record type, the obJect text contained
in this record is to be loaded to memory at the specified address
RELATIVE to the starting address of the relocatable code. The
address field is specified as relative to starting address 0000
which is assumed to the the first location within a code segment.
The actual address to which this code will be loaded is calculated
by the Loader by adding the LOAD ADDRESS offset <See USER-LOADER
PARAMETER BLOCK) to the relative address contained in the record
itself. The relative address is the 16-bit offset from the
beginning of the actual program so the placement in RAM will
therefore be relative to the starting location which you
specified in the parameter block.

INFORMATION RECORDS

INFORMATION records are the modifiers for the TEXT records.
may be no information records or man~ of them.

..

There

There are two basic types of information records: those which
reference single byte data or low byte of an address, and those which
reference the high b~te of an addres~ reference.

LOW BYTE, ONE BYTE, AND WORD REFERENCE INFORMATION RECORDS

The format of an information record which can rnodi~y low
byte addres~ references. one byte (page zero) addresses
or word references <those which modify a 16-bit address
and point to the low byte of that quantity) is shown here:

+---/ /------------+
: TYPE f LENGTH Offset 1 Offset 2 Offset N

ID I I ·
+---/ /------------+

23

www.atarimuseum.com

The TYPE ID field will specify
offset specifies the location.

, is valid are the following:

the type of reference for which the
The TYPE ID's for which this format

TYPE ID

02

03·

04

REFERENCE TYPE

Non-zero page low byte reference to a non-zero
page address. This means that you may have
referenced something similar to the following:

LOA #L,NZREF ;get the low byte of the
i 16-bit integer assigned
;to address NZREF

This will be an address relative to the beginning
of the relocatable file. If the offset points
to the immediate value, it is this value which
will be modified when the LOAD ADDRESS low byte
is added to it to obtain the actual current load
address. The TYPE ID indicates that this instruction
is loaded into a non-Iero page area.

Example: Code loaded into location $1000,
LOAD ADDR is ~ODOl,
NZREF is located at relative address 0050

If code is LDA #L,NZREF, then loader sees:

~1000 A9 <LDA>

$1001 50 <----- offset points here

Load address low byte i~

Value found at pointer is
$01
$50

Loader 2dd~ them, replaces value at pointer with ~51

Zero page low byte reference to c non-zero
pa~e address. This is exdctl~ 2£ described for
Tvpe ID 02 ~bove e:cept thct the code which i£
to be r0loc 2 ted h2s been lo2dcd into ~ p2QQ
zero area instead. The rest of the erplanation
remains exactl~ the same.

Non-zero
addres1Jii.

page one byte references to a zero page
This means that a code se9ment such as:

LDA ZPAGE1 , where ZPAGEl is an address
within page zero,

produces a relocatable code. This code, when stored
in a non-zero page area. rnav have to be relocated
if ZPAGEl is a relative address. In this case, the
example might · show the following:

24

www.atarimuseum.com

05

06

07

Example:

$1000

$ 1001

Assu me that the code specified above
is loaded at $1000, and ZPAGEl is
zero page address ~0045. Also assume
that the ZLOAD ADDRESS vou specified
earlier (see USER-LOADER PARAMETER BLOCK)
contains $10.

AS < LDA . . . z page >

45 <------ Offset points here

The Loader will take the byte at the pointer, add
the ZLOAD Address offset, and replace the value at
the pointer with the newly calculated relocated value.
In this example, $45 is fetched, adds the offset $10,
so the relocated address value is $55 stored into
location $1001.

Zero page one byte reference to a zero page
address. This is exactlv like the relo~~tion
example shown for Type ID 04 above. The onlv
difference is that the code which has been loaded
resides in a page zero area and is modified there.
In the example, the load address, then, could have
been $00A1, instead of $1000. All else remains
the same.

Non-zero pQQe word reference to a non-zero
page addres~. This means the offset points to
the low byte of an obJect code address referenc~
of code which has been loaded into an area not
in page zero.

Example: Code loaded to location $1000,
consisting of LDA $1234, loaded as:

~1000 AD

$1001 34 <---- offset points here

$1002 12

{note th~t the address $1234 is an address relative
to the start of the obJect code file itself, which
starts, relative to itself, at location 0000)

Zero page word reference to a non-zero page
address. This means the offset points to the
low b~te of an obJect code address reference
Of COOe Which has been loaded into ~n ~rg~ not

25

www.atarimuseum.com

·= .. • .. . · . ·. ~· ... · .. -: ~ ' ..

in page zero.

Example: Code loaded to location $ 0023,
consisting of LOA $1234, loaded as:

$0023 AD

.. $0024 .

$0025 12

Now that we've gone over the TYPE ID's for 02-07,
this INFORMATION record can be explained. Recall
TYPE ID, LENGTH, and OFFSET.

the other fields in
from above they are:

The LENGTH field in this record type specifies the total byte count of
the number of OFFSETS which are contained in ·this record. In other
words. it specifies how many of the bytes within the previously loaded
TEXT r~cord are to be modified by the Loader using this specific TYPE
ID. There will be that number of pointers as a part of this record.
The length field may specify a value from 0 to 255.

The OFFSET field specifies a value from 0 to 255, one b~te for each
offset. This forms a pointer which, when added to the starting
address for the text record JUst loaded, gives the address of
~he byte which is to be modified per the relocating instructions
as illustrated above. As noted, there -mav be a~ many as 255 offsets
total contained in any INFORMATION record. ~

SUMMARY OF LOADER PROCESSING FOR WORD, LOW BYTE AND
SINGLE BYTE INFORMATION RECORDS

1. The preceeding TEXT record has been read and its obJect
code has been placed into RAM at the appropriate
displacement relative to the preceedin ~ relocatable
tExt record.

2. Each offset is used to obtain a data value (either
one or two bytes, depending on record type) from the
preceeding obJect text record.

3. The ba~e addre~s (user specified Load Address) is
added to the value obtained.

4. The resulting value (one or two bytes, depending on
record type) replaces the data value at the specified
offset location in the RAM.

HIGH BYTE REFERENCES IN INFORMATION RECORDS

26 .

www.atarimuseum.com

The record formats for these cases, TYPE ID's 08 and 09, are different
from those JUSt discussed. This is due to a different typ~ of data
re~uired to calculate the correct address reference.

In the last two cases, <TYPE ID 06 c.nd 07), the pointer specified the
low byte of a two byte address. In order to calculate the correct two
byte address after adding the offset, and to replace both bytes with
the correct relocated address, this single offset pointer is
sufficient. The loader will ~now, in ather words, that the high byte

,·. immed ia .te"Iy · follows · the · low byte; - in ·the . next . seq,uentJal.offset .. :: ~-· - - -~ · . . ,.
location. · ·

However. in the TYPE ID references which follow, the Loader needs more
information in order to be able to calculate the correct address.

Therefore the format of the INFORMATION record for TYPE ID's 08 and 09
appears as follows:

+---/ /--+
~ TYPE L LENGTH : OFFSET 1 : Low : OFFSET 2 l Low : HDRE DATA :

ID : Bvte 1 l Byte 2 : Pair~

+---/ /--+

If you are referencing the high byte of a relocatable address, the
record which contains this reference must also contain a reference
to the low bvte of that address. This would occur as follows:

Ex2mple: The correct way to reference a high b~te
of a relocatable address _ ._

LDA ~L.RADDR IQet low byte. This must be

STA TEI'iP

; located within the SAME TEXT
;record as the reference to the
;high bl_Jte!

;do something with it

LDA ~H,RADDR Jget the hiQh byte of the
ireloc2t2ble aodres~

STA TEMP2 J do something with it

If RADDR is relative location $1234, then the code, when
stored at some location (example - ~1000), would look as
follows:

~1000

Cl001

~1002

A9 CLDA . . . immed i.-:te mode)

34 <----- TYPE ID 08 offset 1 points here

BD 22 22 (2ssumes temp storage spot is absolute
addre~s S 2222 ~or example use only)

..

27

www.atarimuseum.com

$1005 A9 <LDA ... immediate mode)

$1006 12 <----- TYPE ID 08 offset 2 points here

What the relative code assembler will do is to organize the code
so that both references to the high and low bytes occur within the
same 256 byte block of TEXT record. Then a TYPE ID 08 INFORMATION
record can be used to reference and modify it as shown above.

The .· Loade.r w111 · take the byt~ - pointed · to · by Offset .1 .and . treat
it as the low byte of a relative address. It will also take the
byte pointed to by Offset 2 and treat it as the high byte of a
relative address. To this combination relative address, it adds
the LOAD ADDRESS (see USER-LOADER PARAMETER BLOCK).

., : . .;

The high byte of the result replaces the high byte of the relative
address. If there are any other byte pairs specified as part of this
TYPE ID 08 INFORMATION record, they too are processed in the same way.

The low byte of the result is DISCARDED. NOTE, if there is a low
byte which must be relocated as well as its high byte, it must be
done bi,i a TYPE ID 02 or 03. INFORMATION record. This record MUST
FOLLOW that which processed the high byte 08 or 09 type record.

To summari~e, then. _. the record type.s 08 and 09 are provided for
the control of references to the high bytes of .. relocatable addresses.
The onlv difference between a type 08 and 09 INFORMATION record
is thot the TYPE ID 08 is used to process TEXT records lo2ded
into non-zero paQe areas of memory. A TYPE ID 09 record accom
punies a TEXT record loaded in t o zero paQe.

END RECORD

The END record is the last record processed bu the Loader. It
h2 s u TYPE ID of hexaoecima l OB.

The END record alwavs consists of four bytes. The first is, a-.
usu:-1. the TYPE ID. The ~ccond bt_~te is cl:lled the 5elf-start
flag. The value in the self-start flag has the following me.o.ning:

VALUE

00

01

INTERPRETATION

Progr~m execution after relocation is not re~uired.
The two bytes which follow the self start flag in
the END record are ignored, however must still have
been provided to the Loader. The RUN ADDRESS
<See LOADER-USER PARAMETER BLOCK> is left as 0000.

This tells the Loader that the execution entry point
address contained in the END record is an absolute
addre~1i.

28

www.atarimuseum.com

02 This tells the Loader that the execution entrv point
address contained in the END record i~ a relative
address. To obtain the absolute address, the user
provided LOAD ADDRESS is added to the relative address
contained in the END record.

The calculated absolute start address (or 0000 if none is required)
is placed into the RUN ADDRESS location within the LOADER-USER
parameter block. After the processing of the END record, the

· · · Loader· returns to. tf:le . calling :routin~ wi_.th ? ,n . ~ ,TS. . . ~

..

29

www.atarimuseum.com

DATA BASE CHANGES FROM REV. B TO]200

LOCATION REV.B USE 12ee USE

131:300 reserved LNFLG for inhouse debugger.
0001 .. NGFLAG for power-up self test.
001C PTIMOT to 0314 ABUFPT reserved.
001D PBPNT to 1:32DE •
~01E PBUFSZ to 02DF •
001F PTEHP eliminated • I
13036 CRETRY to 029C LTEMP loader temp.
01:337 DRETRY to 02BD II

004A CKEY to 03E9 ZCHAIN handler loader temp.
004B CASSBT to 133EA ..
0060 NEW ROW to 02FS FKDEF func key def ptr.
0061 NEW COL to 02F6 •
13062. .. PALNTS PAL/NTSC flag.
01379 ROW INC to 02F8 KEYDEF key def ptr.
130JA COL INC to 02F9 •
13233 reserved LCOUNT loader temp.
0238-0239 • RELADR loader.
0245 • RECLEN loader •
0247 I LINBUF -- eliminated

:_ }>:;~~-026t3A • reserved •
• VSFLAG fine scroll temp.

'- 026D .. KEYDIS keyboard disable.
026E • FINE fine scroll f!ag.
0288 CST AT eliminated HI BYTE loader.
028E reserved - NEWADR loader.
029C THPXl eliminated CRETRY from 0.03 6.
132BD HOLDS eliminated DRETRY from 0037.
132C9-02CA reserved RUNADR loader.
132CB-02CC • HI USED loader.
0 2CD-132CE • ZHIUSE loader.
02CF-02DB .. GBYTEA loader.
132Dl-e2D2 • LOADAD loader •
fl2D3-02D4 • ZLOADA loader.
132D5-02D6 • DSCTLN disk sector size.
02D7-02D8 • ACMISR reserved.
132D9 • KRPDEL auto key delay.
132DA • KEYREP auto key rate.
132DB .. NOCLIK key click disable.
02DC • HELPFG BELP key flag.
02DD • DMASAV DMA state save.
132DE • PBPNT from 13 01D •
fl2DF • PBUFSZ from 0 01E •
02E9 • HNDLOD handler loader flag •
fl2F5 • NEW ROW f.rom 13 0613.
02F6-02F7 • NEWCOL from 13061.
e2FB • ROWINC · -- from 0 079.

·• from 0137A. fl2F9 COLINC .--
030E ADDCOR eliminated JMPERS

.
option jumpers. --

.. www.atarimuseum.com

. .

13314
1333D
033E
033f
03EB
03E9
133EA
03EB
03ED-03F8
133F9
03FA
e3FB--:-03FC

.,

TE~P2

reserved
•
•
•
•
• ...
•
•
•
•

to 13313 PTIMOT
PUPBTl
PUPBT2
PUPBT3
SUPERF
CKEY
CASSBT
CARTCK
AOlVAR

MINTLK
GINTLK
CHLINK

from 1313lC.
power-up/RESET. ..

..
Screen Editor.
from 004A.
from 0 04B.

. .
cart checksum. --
reserved • ..
cart interlock •
handler chain.

..

www.atarimuseum.com

GET CHARACTER DATA FORJ-lATS

Modes 12,13 -- M = color

7
+-+-+-+-+-+-+-+-+
IMI D I

·.· · modifier +~+~+7+-+-+~+~+-+

..
D = truncated ATASCII

.Mode 14 -- D = color

Mode 15 -- D = color

PUT CHARACTER DATA FORI1ATS

Modes 12,13 -- M = color
modifier

+-+-+-+-+-+-+-+-+
I zero IDI
+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+
I zero I D I
+-+-+-+-+-+-+-+-+

7
+-+-+-+-+-+-+-~-+

!MI D . I
.+-+-+-+-+-+-+-+-+

D = truncated ATASCII

.Mode 14 -- D = color

.Mode 15 -- D = color

+-+-+-+-+-+-+-+-+
I ? IDI
+-+-+-+-+-+-+-+-+

+-+-+-+ - +-+-+-+-+
I ? I D I
+-+-+-+-+-+-+-+-+

. .. . - . .. · ·

www.atarimuseum.com

CHARACTER DEFINITION fORMAT fOR J-10DES] 2 &] 3

7
+-+-+-+-+-+-+-+-+
I I I I I relative _ byte 0

. .. (c:+ -'.+.::.. +.:_·+ :_+ -+ :.._+ .::.+ ' -...

I I I I I
==

+-+-+-+-+-+-+-+-+
I I I I I
+-+-+-+-+-+-+-+-+

. ., ;:. .

r~lative byte 7
I

Each 2-bit color specification in the character definition maps
to the color registers as shown below:

e == BAK
1 == PFe
2 = PF1
3 = PF2 if bit-7 of color modifier = e, or

PF3 if bit-7 of color modifier = 1.

..

·•

- .·. ,...._ . .:~

www.atarimuseum.com

Appendix H (new mooes)

Mode Horiz. Vert. Vert. Colors Data Color memory
.. posit. w/o sp w sp value reg. reqd.
T

(split) (full)
..

·- _ - .. ··: . : ~~ - •' . ; ;' ..

12 40 24 20 5 00-7f * 1154 1152

13 40 12 10 5 00-7F * 664 660
c

14] 60 192]60 2 e BAK 4270 4296
1 PF0

15 160 192 1613 4 13 BAK 8112 8138
1 PF0
2 PFl
3 PF2

* See CBARACTER DEFINITION FORNAT FOR MODES 12 & 1 3.

www.atarimuseum.com

