
(- --

L.E. Disk Software Development System
Available Command Descriptions

Introduction

This is the list of the currently supported commands for the LE
Software Development System, revision S - 5. It supersedes the
LE, LD-8, LC, and LB versions.

All commands are sent to the disk drive through a memory mapped
interface, using locations $D700,$0701, and $0702.

$0700 is "Port A". It handles communications from the zso to the
Atari.
$D701 is "Port B". It handles communications from the Atari to
the zso.
$0702 is the handshake ~ communications ports.

Two bits of $0702 can be read to determine communications
status. The top bit indicates something has been sent on PORTB
to the ZSO, but not read. The nextmost lower bit (bit 6)~

indicates that something has been sent to the Atari on PORTA and
not read.

All commands are sent the
subroutine, 'called GEl'JCMD.
the command to the ZSO,
nothing gets snarled up <as
GENCMO is used as follows:

LDA #(command #)
JSR GENCMD

same way throug~ a common Atari
GENCMD handles the details of getting

timing it correctly, and ensuring
is easy to do with two processors).

And it worries about the rest.

At the termination of any command, the ZSO returns the floppy
controller status to indicate the command is finished. Generally
one sends in the command, via GENCMO~ then waits for something
to appear on PORT~ -- which the ZSO has sent. Once something
appears on PORTA, the command is done.

A subroutine called WTASET is generally used to determine this
condition. It literally "waits until POF:TA is set", or until the
ZSO has sent data to the Atari. For in~tance, a typical command
<to "restore" the disk to track 0:)

LDA #$10
JSR GENCMD
JSR WTASET
LDA PORTA ----- - -

restore command
send in command, start it going
wait for completion
~et statu5 (optional).

Some commands involve transferring data to/from the ZSO. The
trick here is to not overrun the ZSO; i.e., send a data byte
before the previous one sent has been read. Some subroutines are
handy here: WTBSET and WTBCLEAR. For instance~ if we are doing a

' L

sector read~ we must send the track and sector #. So first~
we issue the read sector command:
LDA #$10
JSR GENCMD

Then wait for the PORTB to be "clear" (i.e.~

read in the sector number>,

JSR WTBCLEAR

Then, send in the track number:

LDA #TRACI<
STA PORTB

Z80 is ready to

Then wait for the Z80 to read in the track number:

JSR LtJTBCLEAR

Then send in the sector number .•

LDA #SECTOR
STA F'ORTB

Similarly, WTBSET can be used to determine if the Z80 has sent
something to be read, as when it transfers dat a to the Atari.

With all of this in mind, let's go through the command list.

.,.t
·~

,_

$12 SETON

Sent: Disk #: 1~2~3,4~5,6.7,8

Recieved: Status of that disk.

$00 disk is offline <no such disk on this system)
$DD disk is online and double density
$FF disk is online and single density

SETON is used to select a given disk drive on the LE system. It
has multiple functions.

First, it is used to determine if the LE handles the drive
request. Let's say you do a sector read to disk ~3. A SETON is
performed, and the LE system responds with whether or not it HAS
a disk #3. If not, the request is then sent to the Atari disk
#3. If it DOES have a disk #3, then whether or not disk 3 is in
double or single density is returned for the Atari DOS to worry
about.

Second. it is used to select which disk drive successi v e
commands are active on. For instance, if you do a RESTORE ($10>,
it'll seek the drive number last selected out to track 00.

Third, it physically sets up
single/double density.

the controller chip for

Single/double density is determined at bootup time by the four
position DIP switch; on is DD, off is SD. The lights at the
right side of the board indicate DD/SD; on is DD, off is SD. You
cannot change status midway through, because Atari DOS wll flip
out if you do; it will try to copy 256 bytes into a 128 byte
buffer, or other odd things. Just reboot. <Rebooting also resets
the Z80, which then rechecks the 4-position switch>.

Copy systems are not set up for double density. This is a
special order item only for additional cost, requiring hardware ~

changes.

SETDN also keeps track of whether or not a given drive has ever
been accessed. If it has not, and it is selected, it must be
RESTOREd to get the disk head to a "known" position. Hence, the
first time a disk is selected~ it will be restored. <This also
cures the well-known "BOOT ERROR" message on previous ROMS).
Remember that a STATUS command, issued by Atari DOS, causes a
SETON for each drive <the Atari is trying to figure out how many
drives it has online>, so the first time you press RESET,the
drives may switch on momentarily down the line from 8,7, 6 •. to
1.

Also note that Atari DOS 2.0S can only "really" handle-~dFi"Ves; ------­
the DOS menu loads into the area occupied by the memory buffers
for drives 5-B. If you have an 8 drive system you need 2.00 or
its equivalent (ala PERCOM>.

SETDN returns a 00 if LE has no drive by that number. In the
Atari ROM, this tells the DOS to ship this disk request off to
the normal Atari disk SID handler. SETDN returns a FF if the
drive is on and in single density; in the Atari ROM, this tells
the Atari to let us handle the disk request in SD. A DD means
we'll handle it in double density.

$3A FREAD128

Fast Read 128 is a quick way for reading a SO sector.

Input: Track #~ then Sector #

Output: Status byte (00 means ok, FF = failed)
then, if it went well, 128 bytes of data are sent through PORT
B.

Normally the Atari disk ROM worries about this for any sector
request. If you must do it by hand, send in the $3A with GENCMD~
wait for B to go clear~ send in the track number~ wait for B to
clear~ then the sector number. The disk currently selected will
go whirr, and something will show up on PORTA. This is a status
byte. If it is a FF, the read failed, and the Z80 is waiting to
do something else. <Probably a bad sector or something else is
wrong). If it is a 00, all is well. Start reading, off of Port
B, the 128 bytes of data. Do
something like this:

LOOP
LDY #0

JSR WTBSET
LOA PORTA
STA BUFFER~Y
INY
CPY #$80
BNE' LOOP

wait for a data byte to be sent
get data byte

129 bytes yet?

After 128 bytes, terminate this command by raising the command
line. Do this by sending a 3 to $0702. This tells the Z90 that
all is done.

Note: having the drive door open or other such will just cause
an ERROR-144. Atari DOS will usually issue four or five retries
of any command.

-- ---

$3C

Fast Read 256 Bytes

Reads a double density sector. Of course~ you must have the
drive selected as DO. Works exactly the same as FREAD128~ just
transfer 256 bytes out.

(

$3B

Fast Write 128 Bytes

Input: Track #
Sector #
128 bytes of data

Output: Status, of how it went <FF=bad~ anything else =ok>;

Normally the Atari disk ROM will do this for you if you issue a
legal sector request through SIOV or DSKINV. But~ if you want to
do it the hard way, just ship it the track~ sector~ 128 bytes
(waiting each time for B to be clear before sending a new byte,
with WTBCLR>~and wait. Whirrr. A status byte will pop up on port
A, indicating how things went.

$3D

Fast Write 256 Bytes

Input: Track #
Sector #
256 Bytes of Data

Output: Status, of how it went <FF=bad, anything else =ok>.

Same as FWRITE128, just 256 bytes instead, and, of course~ you
must be in DD.

·..:: $41

Format

No input needed.

Output: SFF if failed to verify the disk~ 00 = ok.
Does not try to return #'s of bad sectors like the Atari
(or other
silliness>.

does

Formats the disk with the LE "fast" pattern, every other setor.
Reads in
every sector to verify the format worked. It seems to format
slower, because it does a FORMAT, then read of every sector on a
track 3 passes. It also carefully times the track to track
interleaving so there is minimal delay between reading sector 18
on one track and sector 1 on the next track~ sdmething else
Atari forgot about; it makes 6 seconds difference reading in the
whole disk just by straghtening that out!

Atari DOS retries a format four or five times~ ERROR-173 if it
f ai 1 s.

Trying to format a write protected disk doesn't work.

Formatting ~ disk with the drive door open can hang the system;
there is no room in the output loop for a check of such things.
Please, don't.

Note that our formatting pattern will run a bit slowly, like the
old "B" rom format, on an Atari drive, and an Atari formatted
disk will run just a tad faster on our drive <no transfer time
to speak of>. Also note that a very few copy protected disks
will not boot on our drive because it is so fast;they rely on
timing patterns, and our drive gets sectors back too fast. For
your information, we retrieve every other sector on the disk
(i.e., 1,x,2,x,3>, rather than abou~ every 9th (like the Atari).
We could retrieve every one, but Atari DOS is not that fast.
plus screen refresh kicks the processor off every 1/60th second
anyway ••

$42

Double Density Format

Same as SD format, except it does it for double density. The
interleave pattern is every four sector (i.e., 1, x, x, x, 2, x,
x, x, 3 .•) not because we can't transfer the data fast enough,
but because Atari DOS can't. <Typical>. Anyway, it runs around
10 times faster tha~~ERCOM D~ _ anyway. _The two formats, PERCOM
and ours; ar~~~mpatible; our disks will run in theirs, but
theirs will run fairly slowly in ours <at their usual speed).

RESTRICTED RELEASE COMMANDS:

$39

Fast Write 128 Bytes Deleted Sector
This works the same as FWRITE128, except the data address mark
is written as an F8~ not an FB which is normal. The 1771/1797
cantrall ers call this a "deleted sector". It is NOT a bad
sector! It is an extremely devious form of copy protection.

After any sector read on the Atari disk drive, a status byte is
set. The $20 bit <bit 5> is set to 0 if the sector was normal~
an a 1 if the sector is "deleted". <Apparently this feature was
added to allow you to delete data at the disk sector level, but
isn't used much). Anyway, in the course of Atari disk reads~ if
you issue a status command~ you get that sector byte~ along with
three others~returned to you in DVSTAT <see the hardware
manual). So what you do for copy protection is read your special
"deleted sector", then do a disk status. and look for the
deleted sector bit. SPECIAL NOTE: Everything in the Atari disk
drive is inverted, so the status will come up as a 0 (zero> for
deleted sector mark and a 1 for a normal sector. Anyway, if you
don't find a deleted sector status bit, someone has cloned your
disk.

What's neat about all this is that even though the Atari reads
the sector and gives an ERROR-144~ it still sets this special
bit that is set under no other circumstances. I do not know of
any Atari drive but ours that can write these deleted sector
marks.

Note that data seems to be returned by the 810 disk ~rom a
deleted sector, even though there is an ERROR-144 happening.
This is interesting, and should . be investigated.

·)

~ _,

$3F

Write Half Sector (Generate CRC Error)

A quick way to trash a sector.

Input: Track #, Sector #.

OUTPUT: Always $FF.

All this does is write 64 bytes to a given sector, then
interrupt the controller out so that the CRC bytes do not
update. When the 810 reads this sector, bango error 144.

You can check and make SURE it is a CRC error by looking at the
floppy status register. Bit #3· ($08) is 1 (invert that to a 0)
if a CRC error happened. Remember, error, 144"s happen from all
sorts of causes; drive door not open, write protected disk on
write, and so on, and for copy protection with bad sectoring,
you realy should check to see that a CRC error happened.

I do not recommend using CRC bad sectoring only. Too many
pirates can zap sectors with ease; many have mounted switches to
trash the "write data" line on their disks, for instance, to
kill a given sector.

Also note a timeout error (144) can be generated by having
no-such-sector in the sector interleave pattern, using custom
sector patterns. But that won't return a CRC P.rror, so you can
determine the difference.

As a practical note, everyone seems to think that a bad sector
is a bad sector is a bad sector, whereas there are many
different types of bad sectors, all detectable, that can be
differentiated. Then, when your average pirate goes and makes a
generic bad sector, generally a CRC error, you can catch him at
it and reformat the disk <or something horrible.>

Also, it is a VERY good idea, when you catch a pirate in your
program, to 1 et the program "boot" to its title page. That ~Jay,

they think they have a running copy. PREPPIE! and Threshold do
this and have frustrated many folks.

$3E

Write half sector <CRC error) with Deleted Sector Mark.

Combination of the above. EXTREMELY hard to break. Check the
status register to make sure that both a deleted sector and a
CRC error occurred. Both bits 5 and 3 should be 0 <remember,

___________ 177l ___ Ls..._ inverted data - bus, so the bits are 1, but we seem them
as 0).

- l --- ---

$48
SPFORMAT

Lay out a special format on one track of your disk <SO only>.

Input:
Track #, then 18 sector #'s in the interleave pattern you want.

As usual, use WTBCLEAR to not overrun the Z80.

Returned:
something>.

00 if ok, FF if it died <write protected or

This reformats the specified track with a standard format, using
the sector interleave indicated. This has endless copy
protection possibilities. For instance, you can fill a track
with multiple sector #1's~ then read between them to determine
you get different data from a read of a same sector # -- hence~

not a pirated copy, because an 810 cannot generate duplicate
sector numbers. Or~ you can de obscure and buzarre timing
schemes based on a given interleave~ where you read THIS sector~
then THAT sector~ and then THIS sector should should show up in
a certain amount of time~ or it is a pirated copy.

I'll le~ve the deviousness up to you; the tool is there to use.

Also~you can use this to generate Atari "C" format disks on the
LE drives, sine your production disks probably don't want our
"slow" interleave pattern on them.

There are two support programs for this one. One is just a
sample one-track reformatter. The other formats a whole disk to
Atari "C" format.

Don•t forget to write the directory, etc~ When you format a
disk, DOS must lay out the VTOC, boot tracks, etc.

One Extremely Devious Scheme: Lay out a few tracks with this,
delaying appropriately, so that there is a definite lag between
readinga sector on one track, switching tracks, and reading
another sector. Make this delay very different than the Atari
delay. Then, when booting, read back and forth a few times~ and
make sure the delay matches what you put in. This would be
difficult to impossible to break for most pirates.

$50
Track Read

Requires Support Program

Input: Track #
Output: Gobs of Data

This does a full track
bytes on the track.
marks •• you name it. It
utility possible.

dump, some $1EOO bytes worth~ of all the
This includes sector marks~ CRC, index
is the most powerful disk examining

This one has a short program associated with it to handle
snarfing the data off the ZBO and stuffing it into the Atari's
memory. To use, load the track ~ump program, place the track #
you want to dump in byte $4FFF~ and run at $4800. The disk will
spin briefly as the track dumpS~ then from $6000 to $7EOO will
be your track data.

Note that $1EOO is more than one revolution of
overlap is deliberate.

the disk--the

Track dumps are extremely handy for checking your interleave
schemes, deleted sector marks, and so on. I strongly recommend
you get a 1771 data sheet to understand lihat' s on the track if
you don't already; disks are a whole science by themseleves.

Track dump works in DD.

Track dumps work on ANY Atari disk, perdiod~ Please be discrete
with this tool; it cannot be protected against.

Note that track dumps are not always 100/. reliable, particularly
when the floppy controller is resyncing. In particular~ the FE
sector mark sometimes ends up as CE.

-L

$60
Read Address Marks

This is a lot like a read sector command~ except it spins the
disk~ and for a given track, returns you all the sector mark
data. The sector mark data is the track #, side #, sector size,
sector #, and CRC 6 bytes. The neat thing is that this
returns you the interleave pattern fast, easy, and reliably.

Send in the $60, Track #, and <useless byte> sector #. <I used
many parts of the FREAD128 command to save space, hence the
sector# is included). Returned will be a FF if it bombed, else
anything~ then 128 bytes. The 128 bytes will be 6 x 20 <120>
sector marks, then 8 useless bytes.

This has all sorts of potential, presently unexplored. Right now
it is a fast way of giving you the interleave pattern of a disk,
but that could be used (for instance> to optimize the verify
process on the supercopy system, for instance.

$51 COPYINIT
$52 SUPERCOPY

These commands trigger off the supercopy <analog copy> process.
The commands must be driven by an applications program, so
thereps no use getting into the guts of how they work here.

Quick Reference To Commands:

$10:
$12:
$3A:
bytes
$3C:
bytes
$3B:
$30:
$41:
$42:

RESTORE
SETON~ input: drive #.
FREAD128~ input: track #, sector #~ output:

FREAD256, 1111

FWRITE128, input: track #, sector #~ 128 bytes
FWRITE256~ 1111 256 bytes
LFORMAT
LDDFORMAT, dden format

$3F: Write half sector <CRC error>

status,

$3E: Write half deleted sector <CRC error, Deleted Sector)
$39: Write Deleted Sector <input same as FWRITE128)
$48: Special Track Format: Input: track #, 18 sector #"s
$50: Track Dump
$60 Read Address Maks
($51: Copy Initialize)
($52: Copy>

$0700: PORT A
$D701: PORT B
$0702: PORT C

Disk to Atari
Atari to Disk

128

256

Bit 0: =1 to enable SIOV trap~ =0 to disable trao. (Leave ~.)

Bit 1: Command line. High to get ZBO"s attention, low to execute
cmd.
Bit 6: Unread data awaiting on Port A (for Atari)
Bit 7: Unread data awaiting on Port B (for Disk)

Other Misc. Notes:

Use lots of bad sectors. They are very irritating to pirates
because they take so long to copy~ because it takes the 810
about 20 seconds to figure out a sectors is bad •• not even
counting retries. And writing them is a pain~ too~ unless they
have some sort of super-sophisticated chip. So blank fill your
disk with bad sectors.

BURY your copy protection code. Be devious. Remember, if someone
can crack your disk code, they will produce an unprotected copy~
and it is the experience of most disk manufacturers that the
unprotected copies are the big piracy problem. Doing a disk
access every now and the is a good idea~ for instance~ to write
a high score. Maybe force the user to remove the write protect
tab ("to write the high score") if you detect pirating, then
reformatting the disk •. or anything. But don"t place the code
near the start of the program~ don't leave it "legible" (i.e.,
XOR it with something, then have it de-XOR'd and executed at the
very minimum). Also~ interrupts can be very helpful--you can
have code magically appear where a pirate's trace will miss it.

Good luck, and if you have any questions,
8-5, Central
time, to answer them.

Dave Small

I am available M-F

