L.E. Disk Socftware Development System
Available Command Descriptions

Introduction

This is the list of the currently supported commands for the LE
Software Development System, revision S - 5. It supersedes the
LE, LD-8, LC, and LB versions.

All commands are sent to the disk drive through a memory mapped
interface, using locations $D700,$D701, and $D702.

$D700 is "Port A". It handles communications from the Z80 to the
Atari.

$D701 is "Port B". It handles communications from the Atari to
the 2Z80.

$D702 is the handshalke % communications ports.

Two bits of $D792 can be read to determine communications
status. The top bit indicates something has been sent on FORTR
to the 7280, but not read. The nextmost lower bit (bit &),
indicates that something has been sent to the Atari on PORTA and
not read.

All commands are zent the same way through a common Atari
subroutine, ‘called GENCMD. GEMCMD handles the details of getting
the command to the 789, timing it correctly, and ensuring
nothing gets snarled up (as is easy to do with two processors).
GENCMD is used as follows:

LDA #{(command #)
JSR GENCMD

And 1t worries about the rest.

At the termination of any command, the Z80 returns the +floppy
controller status to indicate the command is finished. Generally
one sends in the caommand, via GENCMD, then waits for something
to appear on FORTA —— which the Z80 has sent. 0Once samething
appears on FORTA, the command is done.

A subroutine called WTASET is generally used to determine this
condition. It literally "waits until FORTA is =set", or until the
180 has sent data to the Atari. For instance, a typical command
(to "restore” the disk to track 03

LDA #%10 ;s restore command
JSR GEMNCMD ; send in command, start it going
JSF WTASET ;3 wait for completion

~LDA PORTA ; get status (optional).

Some commands involve transferring data to/from the 1Z80. The
trick here 1is to not overrun the 280; i.e.., send a data byte
before the previous one sent has been read. Some subroutines are
handy here: WTBSET and WTRCLEAR. For instance, if we are doing a

sector read, we must send the track and sectaor #. So first,
we issue the read sector command:

LDA #5510

JSR GEMNCMD

Then wait for the PORTB to be "clear" {(i.e., 280 is ready to
read in the sector number),

JSR WTRCLEAR
Then, send in the track number:

LDA #TRACK
STA PORTH

Then wait for the ZI80 to read in the track number:
JSR WTRBCLEAR
Then send in the sector number..

LDA #SECTOR
STA FORTH

Similarly, WTBSET can bhe used to determine if the ZI80 has sent
something to be read. as when it transfers data to the Atari.

With all of this in mind, let’s go through the command list.

$12 SETDN

Sent: Disk #: 1,2,3,4,3,6.7,8
FRecieved: Status of that disk.

$00 —-- disk is offline (no such disk on this system)
$DD —— disk is online and double density
$FF —— disk is online and single density

SETDN is used to select a given disk drive on the LE system. It
has multiple functions.

First, it is used to determine 1f the LE handles the drive
request. Let® s say you do a sector read to disk #3. A SETDM is
performed, and the LE system responds with whether or not it HAS
a disk #3. If not, the request is then sent to the Atari disk
#3. If it DOES have a disk #3, then whether or not disk 3 is in

double or single density is returned for the Atari DOS to worry
about. ‘

Second, it 1is used to select which disk drive successive
commands are active on. For instance, if you do a RESTORE ($%1Q),
it’ll seek the drive number last selected out to track 00,

Third, it physically sets up the controller chip for
single/double density.

Single/double density is determined at bootup time by the four
position DIP switch; on is DD, off is SD. The lights at the
right side of the board indicate DD/SD; on is DD, off is SD. You
cannot change status midway through, because Atari DOS wll flip
out 1if vyou do; it will try to copy 2356 bytes into a 128 byte
buffer, or other odd things. Just reboot. (Rebooting also resets
the Z80, which then rechecks the 4-position switch).

Copy systems are not set up for double density. This is a
special order item only for additional cost, requiring hardware
changes.

SETDN al=so keeps track of whether or not a given drive has ever
been accessed. I+ it has not, and it is selected, it must be
RESTOREG to get the disk head to a "known" position. Hence, the
first time a disk is selected, it will be restored. (This also
cures the well-known "EBOOT ERROR" message on previous ROMS).
Remember that a STATUS command, issued by Atari DOS, causes a
SETDN for each drive (the Atari is trying to figure ocut how many
drives it has online), so the first time vyou press RESET,the
drives may switch on momentarily down the line from B,7, 6.. to
1.

Also note that Atari DOS 2.05 can only “really” handle 3 drives:
the DOS menu loads into the area occupied by the memary buffers
for drives S-8. If you have an 8 drive system you need 2.0D or
its equivalent (a la PERCOM).

SETDN returns a Q0 if LE has no drive by that number. In the
Atari ROM, this tells the DOS to ship this disk request off to
the normal Atari disk SI0 handler. SETDN returns a FF if the
drive is on and in single demsity; in the Atari ROM, this tells
the Atari to let us handle the disk r=quest in SD. A DD means
we'll handle it in double density.

$3A FREAD12Z8
Fast Read 128 is a guick way for reading a SD sector.
Input: Track #, then Sector #

Output: Status byte (00 means ok, FF = failed)

then, if it went well, 128 bytes of data are sent through PORT
B.

Normally the Atari disk ROM worries about this for any sector
request. I+ you must do it by hand, send in the $IA with GENCMD,
wait for B to go clear, send in the track number, wait for B to
clear, then the sector number. The disk currently selected will
go whirr, and something will show up on PORTA. This is a status
byte. If it is a FF, the read failed, and the Z80 is waiting to
do something else. (Probably a bad sector or something else is
wrong). If it is a 00, all is well. Start reading, off of Port
B, the 128 bytes of data. Do

something like this:

LDY #0O
LOoP
JBR WTESET ;s wait for a data byte to be sent
LDA PORTA 5 get data bvyte
STA BUFFER,Y
INY :
CPY #%80 3 128 bytes vyet?
BNE LDOP

After 128 bytes, terminate this command by raising the command

line. Do this by sending a 3 to $D702. This tells the Z80 that
all is done.

Note: having the drive door open or other such will just caucse
an ERROR-144. Atari DOS will usually issue four or five retries
of any command.

e 2y

®3C
Fast Read 25& Bytes
Reads a double density sector. Of course, you must have the

drive selected as DD. Works exactly the same as FREAD128, just
transfer 256 bytes out.

$TH
Fast Write 128 Bytes

Input: Track #
Sector #
128 bytes of data

Qutput: Status, of how it went (FF=bad, anything else =agk);

Normally the Atari disk ROM will do this for you if you issue a
legal sector request through SIOV or DSKIMNY. But, if you want tao
do it the hard way, just ship it the track, sector, 128 bytes
(waiting each time for B to be clear before sending a new byte,
with WTBCLR),and wait. Whirrr. A status bvte will pop up on port
A, indicating how things went.

&3D
Fast Write 256 Bytes
Input: Track #
Sector #
256 Bytes of Data
Output: Status, of how it went (FF=bad, anything else =ak).

Same as FWRITE128, just 256 bytes instead, and, of course,
must be in DD.

you

%41
Format
No input needed.

Qutput: $FF if failed to verify the disk, 00 = ok.

Does not try to return #°s aof bad sectaors like the Atari does
(or other

silliness).

Formats the disk with the LE "fast" pattern, every other setor.
Reads in

every sector to verify the faormat worked. It seems to format
slower, because it does a FORMAT, then read of every sector on a
track - 3 passes. It also carefully times the track to track
interleaving so there is minimal delay between reading sector 18
on one track and sector 1 on the next track, something else
Atari forgot about; it makes 6 seconds difference reading in the
whole disk just by straghtening that out!

Atari DOS retriecs a farmat four or five times, ERROR-173 1§ it
fails.

Trying to format a write protected disk doesn’t wori.

Formatting & disk with the drive door open can hang the system:

there 1is no room in the output loop for a checl of such things.
FPlease, daon’t.

Note that our formatting pattern will run a bit slowly, like the
old "B" rom format, on an Atari drive, and an Atari formatted
disk will run just a tad faster on our drive (no transfer time
to speak of). Also note that a very few copy protected disks
will not boot on our drive because it is so fast;they rely on
timing patterns, and our drive gets sectors back too fast. For
vour infaormation, we retrieve every other sector on the disk
(i.e., 1,%,2,%,3), rather than about every %th (like the Atari).
We could retrieve every one, but Atari DOS 1is not that fast,

plus screen refresh kicks the processor off every 1/60th second
anyway..

£472
Double Density Format

Same as SD format, except it does it for double density. The
interleave pattern is every four sector (i.e., 1,

My My e 2, M,
2y M, 3J..) not because we can’t transfer the data fast enough,
but because Atari DOS can’t. (Typical). Anyway, it runs around

10 times faster than FERCOM DD anyway. The two formats, PERCOM

“and ours, are compatible; our disks will run in theirs, but

theirs will run fairly slowly in ours (at their usual speed).

RESTRICTED RELEASE COMMANDS:
$39

Fast Write 12B Bytes Deleted Sector

This works the same as FWRITE128, except the data address mark
is written as an F8, not an FB which is normal. The 1771/1797
controllers call this a "deleted sector". It is NOT a bad
sector! It is an extremely devious form of copy protection.

After any sectaor read on the Atari disk drive, a status byte is
set. The $20 bit (bit 3) is set to 0 if the sector was normal,

an a 1 if the sector i1s "deleted"”. (Apparently this feature was
added to allow you to delete data at the disk sector level, but
isn’t used much). Anyway, in the course of Atari disk reads, if

you issue a status command, you get that sector byte, along with
three others,returned to vyou in DVSTAT (see ‘the hardware
manual). So what you do for copy protection is read your special
"deleted sector", then do a disk status. and look for the
deleted sector bit. SPECIAL NOTE: Everything in the Atari disk
drive is inverted, so the status will come up as a 0 (zera) for
deleted sector mark and a 1 for a naormal sector. Anyway, 1if yocu
don’t find a deleted sector status bit, saomeone has claoned vour
disk.

What’s neat about all this is that even though the Atari reads
the sector and gives an ERROR-144, it still sets this special
bit that is set under no other circumstances. I do not know cf

any Atari drive but ours that can write thecse deleted sector
marks.

Note that data seems to be returned by the 810 disk +rom a
deleted sectar, even though there is an ERROR-144 happening.
This is interesting, and should be investigated.

E3IF

Write Half Sector (Generate CRC Error)
A quick way to trash a sector.

Input: Track #, Sector #.

QUTPUT: Always %FF.

All this does 1is write 64 bytes to a given sector, then
interrupt the controller out so that the CRC bytes do not
update. When the 810 reads this sector, bango —-— error 144,

You can check and make SURE it is a CRC error by locking at the
floppy status register. Bit #3I ($08) is 1 (invert that to a O)
if a CRC error happened. Remember, error, 144°s happen from all
sorts of cauces; drive door nat open, write protected disk on
write, and so on, and for copy protection with bad sectoring,
you re=aly should check to see that a CRC error happened.

I do not recommend wusing CRC bad sectoring only. Too many
pirates can zap sectors with ease; many have mounted switches to
trash the '"write data" 1line on their disks, for instance, to

kill a given sector.

Alsoc note a timeout error (144) can be generated by having
no—such—sector in the sector interleave pattern, using custom
sector patterns. But that won®t return a CRC error, so vyou can
determine the difference.

As a practical note, everyone seems to think that a bad sector
is a bad sector 1is a bad sector, whereas there are many
different types of bad sectors, all detectable, that can be
differentiated. Then, when your average pirate goes and makes a
generic bad sector, generally a CRC erraor, you can catch him at
it and refaormat the disk (or something horrible.)

Also, it is a VERY good idea, when you catch a pirate in vyour
program, to let the program "boot" to its title page. That way,

they think they have a running copy. PREPPIE! and Threshold do
this and have frustrated many folks.

$3TE
Write half sector (CRC error) with Deleted Sector Mark.

Combination of the above. EXTREMELY hard to break. Check the
status register to make sure that both a deleted sector and a
CRC error ogccurred. Both bits & and 3 should be ©O (remember,

1771 _is inverted data -bus, so the bits are 1, but we seem them
as Q).

$48
SFFORMAT

Lay out a special format on one track of your disk (SD only).

Input:
Track #, then 18 sector #'s in the interleave pattern you want.

As usual, use WTBCLEAR to not overrun the Z80.

Returned: 00 if ok, FF 1if it died (write protected or
something).

This reformats the specified track with a standard format, using
the sector interleave indicated. This has endless copy
protection possibilities. For instance, vyou can fill a track
with multiple sector #1°s, then read between them to determine
you get different data from a read of a same sector # —-— hence,
not a pirated copy, because an 810 cannot generate duplicate
sector numbers. Or. you can dc obscure and buzarre timing
schemes based on a given interleave, where you read THIS sector,
then THAT sector, and then THIS sector should should show up 1in
a certain amount of time, or it is a pirated caopy.

I"11 leave the deviousness up to you: the tool is there to use.

Also,you can use this to generate Atari "C" format disks on the
LE drives, sinc your production disks prohbably don’t want our
"slow" interleave pattern on them.

There are two support programs for this one. One 1is just a
sample one-track reformatter. The other formats a whole disk to
Atari "C" format.

Don’t forget to write the directory, etc! When vyou format a
disk, DOS must lay out the VTOC, boot tracks, etc.

One Extremely Devious Scheme: Lay out a few tracks with this,
delavying appropriately, so that there is a definite lag between
readinga sector on one track, switching tracks, and reading
another sector. Make this delay very different than the Atari
delay. Then, when booting, read back and forth a few times, and
make sure the delay matches what vyou put in. This would be
difficult toc impossible to break for most pirates.

$50
Track Read

Requires Support Program

Input: Track #
Output: Gobs of Data

This does a full track dump, some $1E0O bytes worth, of all the
bytes on the track. This includes sector marks, CRC, index
marks..youw name it. It 1s the most powerful disk examining
utility possible.

This cne has a short program associated with 1t to handle
snarfing the data off the Z80 and stuffing 1t into the Atari’s
memory. To use, load the track dump program, place the track #
vou want to dump in byte $4FFF, and run at $4800. The disk will
spin briefly as the track dumps, then from $6000 to $7E00 will
be your track data.

Note that $1E0CO is more than one revolution of the disk——the
overlap is deliberate.

Track dumps are extremely handy +for checking vyour interleave
schemes, deleted sector marks, and sc on. I strongly recommend
you get a 1771 data sheet to understand what’s on the track if
you don*t already; disks are a whole science by themseleves.

Track dump works in DD.

Traclk dumps work on ANY Atari disk, perdiod. Please be discrete
with this tool; it cannot be protected against.

Note that track dumps are not always 100% reliable, particularly
when the floppy controller is resyncing. In particular, the FE
sector mark sometimes ends up as CE.

$60
Read Address Marks

This is a lot like a read sector command, except it spins the

disk, and for a given track, returns you all the sector mark
data. The sector mark data is the track #, side #, sector size,
sector #, and CRC —-- 6 bytes. The neat thing is that this

returns you the interleave pattern fast, easy, and reliably.

Send in the $60, Track #, and (useless byte) sector #. (I used
many parts of the FREAD128 command to save space, hence the
sector # is included). Returned will be a FF if it bombed, else
anything., then 128 bytes. The 128 bytes will he 6 2 20 (12Q)
sector marks, then 8 useless bytes.

This has all sorts of potential, presently unexplored. Right naow
it is a fast way af giving you the interleave pattern of a disk,
but that could be used (far instance) to optimize the verify
process on the supercopy system, for instance.

€51 —-— COPYINIT
$52 —— SUPERCOFY

These commands trigger off the supercopy (analog copy) process.
The commands must be driven by an applications program, soc
there®s no use getting into the guts of how they work here.

Quick

$10s
$12:
$TA:
bytes
$3C:
bytes
$3R:
$3D:
$41:
$423
$3F
$3E:
$29:
$43:
$50:
$60 R
($S51:
($32:
$D700
D701
$D702
Bit O
Bit 1
cmd.
Bit &
Bit 7

Reference To Commands:

RESTORE
SETDN, input: drive #%.
FREAD128, input: track #, sector #, output: status,

FREAD2S6, ""

FWRITE128, input: track #, sector #, 128 bytes
FWRITEZSH, ™" 2846 bytes
LFORMAT

LDDFORMAT, dden format

Write half sector (CRC error)

Write hal+f deleted sector (CRC error, Deleted Sectaor)
Write Deleted Sectar {input same as FWRITE128)
Special Track Format: Input: track #, 18 sector #°s
Track Dump

ead Address Maks

Copy Initialize)

Capy)

: FPORT A Disk to Atari
: PORT B Atari to Disk
: PORT C

: =1 to enable SI0OV trap. =0 tao disable trac. (Leave 1.)

: Command line. High to get ZB0°s attention, low to execute

: Unread data awaiting on Fart A (for Atari)
: Unread data awaiting on Port B (for Disk)

Other Misc. Notes:

Use lots of bad sectaors. They are very irritating to pirates
because they take so0 1lonc to copy., because it takes the 810
about 20 seconds to figure out a sectors 1s bad..not even
counting retries. And writing them is a pain, too, unless they
have saome sort of super—sophisticated chip. So blank +ill vyour
disk with bad sectors.

BURY your copy protection code. Be devious. Remember, if someone
can crack your disk code, they will produce an unprotected copy,.
and it is the experience of most disk manufacturers that the
unprotected copies are the big piracy problem. Doing a disk
access every now and the is a good idea, for instance, to write
a high score. Maybe force the user to remove the write protect
tab ("to write the high score") if you detect pirating, then
reformatting the disk..or anything. But don’t place the code

near the start of the program, don’t leave it “"legible" (1.e.,
XOR it with something, then have it de—X0OR’d and executed at the
very minimum). Also, interrupts can be very helpful-—-you can

have code magically appear where a pirate’s trace will miss 1t.

Good luck, and if you have any guestions, 1 am available M-F
8-5, Central

time, to answer them.

Dave Small

