
TECH-NICAL MANUAL
®

)I~®
ATARI A Warner Communications Company 0

ATARI ® 8SO™
INTERFACE MODULE

TECHNICAL MANUAL

)I\.
ATARI(i)

a A Warner CommuniCai,IOns Company

Every effort has been made to ensure the accuracy of the product documenta tion in this manual. However, because Atari, Inc. is co n­
stantly improving and updating the computer software and hardware, we are unable to guarantee the accuracy of the printed material after
the date of publi cati on and di sc laim li ability fo r changes, errors o r omissions.

No reproduction of thi s document or any portion of its contents is allowed w ithout specific w ritten perm ission of Atari , Inc.,
Sunnyva le, CA 94086.

Important Information: Li ke any electrica l appliance, this ATA RI Home Computer equipment uses and prod uces radio frequency
energy. If it's not insta ll ed and used properl y according to the instructions in thi s guide, the equi pment may ca use interference with your
radio and television recepti on.

It has been type tested and found to comply w ith the limi ts for a Class B computi ng device. in accordance with the specifications in
Subpart J of Part 15 of the FCC ru les . These rules are designed to provide reasonable protection aga inst such interference w hen the equip­
ment is used in a res identi al setting. However, there is no guarantee that interference w ill not occur in a parti cular home or res idence.

If you believe thi s equipment is ca using in terference w ith your te levision reception, try turn ing the equipment off and on. If the in­
terfe rence problem stops when the equipment is turned off, then the equ ipment is probably ca using the interfe rence. With the equ ipment
turned on, you may be able to correct the problem by trying one or more of the fo ll owing measures:

• Reorient the radio or te levision antenna.

• Reposition the equi pment in relation to the rad io or television set.

• M ove the equipment away from the radio or television.

• Plug the equipment into a different wall outlet so the equipment and the radio or television are on different
branch ci rcuits.

If necessary, consult your ATARI Computer retailer or an experienced radio-television technician for additiona l suggestions.

PRINTED IN U.S.A. © 1982, ATARI, INC. ALL RIGHTS RESERVED

CONTENTS

HOW TO USE THIS MANUAL 1

1 WHAT IS RS-232-C? 3

2 ATA RI BASIC AND THE ATA RI 850
INTERFACE MODULE 7

How To Use the Program 8
Improving the Program 9
Interface Module Capabilities 11

3 HOW THE INTERFACE MODULE
INTERACTS WITH THE SYSTEM 13

Turn-On Operation 13
Without a Disk Drive 13
With a Disk Drive 13
Using a Printer 14

4 PROGRAMMING
THE SERIAL INTERFACE PORTS 15 ' Input/Output Control Block 15
Accessing an RS-232-C Device 15

Step 1 -Configure the Serial Interface Port 15
Step 2 - Using the Serial Interface Port 16

Limitations on Port Configurations 18
Restrictions 19

5 SETTING THE BAUD, WORD SIZE, STOP
BITS, AND READY CHECKING 21

6 SETTING THE TRANSLATION MODES
AND PARITY HANDLING 25

Types of Code Translation 26
Parity 27
Short Word Conversion 27

7 CONTROLLING THE OUTGOING LINES 29

DTR, RTS, and XMT 29
Control Command 29

Contents iii

8 BASIC 1/0 COMMANDS 31

Opening a Port 31
Closing a Port 31
AT ARI BASIC 1/0 Statements 32

GET, INPUT, PUT, and PRINT 33
LIST, SAVE, LOAD, and ENTER 35

9 STARTING CONCURRENT MODE 1/0 37

10 THE STATUS COMMAND 43

Uses of STATUS Command 43
Error STATUS Bits 45

Received Data Framing Error 45
Received Data Byte Overrun Error 45
Received Data Parity Error 45
Received Data Buffer Overflow Error 46
Illegal Option Combination Attempted 46
External Device Not Fully Ready 46
Data Block Error 46
Command Error to Interface Module 46

11 SAMPLE PROGRAMS 49

Transferring ATARI BASIC Source Programs 49
Baudot Terminal Emulator 53
Programming a Printer 58
Reading a Digitizer 60

12 INTERFACE MODULE ELECTRICAL
SPECIFICATIONS 63

RS-232-C Standard 63
RS-232-C Specifications 63
Electrical Specifications of the Serial Ports 64
Printer Port Specifications 65

13 PRINCIPLES OF OPERATION 67

Software Operation 67
Printer Software Operation 69

Contents iv

t

APPENDICES

A Code Tables
B XIO Commands and Tables
C Port Diagrams and Interface Module Schematic
D Troubleshooting
E Error Conditions, Causes, and Corrections
F Product Specifications

INDEX

ILLUSTRATIONS

71
81
87
93
97

101

105

1-1 Communications Hook-Up Showing Role of RS-232-C 4
4-1 Block Output Mode 1/0 17
12-1 Timing of Printer Ports 66
C-1 Pin Functions of Serial Interface Port 1 87
C-2 Pin Functions of Serial Interface Ports 2 and 3 88
C-3 Pin Functions of Serial Interface Port 4 89
C-4 Hook Up of Serial Interface Port 4 for Use With a

20-mA Loop Device 90
C-5 Pin Functions of the Printer Port 90
C-6 ATARI 850 Interface Module Schematic Diagram 91

TABLES

1-1
4-1
10-1

10-2
12-1
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-1 0
B-11
F- 1

The Most Common RS-232-C Circuits
Available Signals on Ports 1, 2, 3, and 4
Decimal Representation of the Error Bits in Location

746
Sense Values Added Into Location 747
RS-232-C Electrical Specifications
Baud Rate Specifiers To Add to Aux1
Word Size Specifiers To Add to Aux1
Specifier for Two Stop Bits To Add to Aux1
Aux2 Specification To Monitor, DSR, CTS, CRX
Translation Mode Options Added to Aux1
Input Parity Mode Options Added to Aux1
Output Parity Mode Options Added to Aux1
Append Line Feed Options Added to Aux1
Control Values for DTR Added to Aux1
Control Values for RTS Added to Aux1
Control Values for XMT Added to Aux1
Pin Connections

4
18

44
48
63
82
82
82
83
83
83
84
84
84
84
85

103

Contents v

HOW TO USE THIS MANUAL

Before reading this ma nua l, you shou ld be familia r with the ATARI® BSO™ Interface
Module ()wners Manual. It tells you how to connect the ATARI 850 Interface
Module, the ATARI 830™ Acou stic Modem, and the ATARI 825™ 80-Column
Printer to your ATARI Home Computer.

While most of the information in this technical manual cove rs the use of the inter­
face module, you ' ll find some instructions here for operati ng the acoustic modem.
The modem cannot function without the interface modu le.

Sections 1 through 3 of the manual explain how the interface modu le works and
what it can do. The beginning user may want to study these sections after setting up ·
and using the equipment. The advanced user should at least skim this material
before going on to Sections 4 through 13, which provide details on the many uses
of the interface module.

This manual describes how to use the ATARI850 Interface Modu le only with ATAR I
BASIC (often referred to in the text simply as BASIC). To carry out the operations
described, you must first insert an ATARI BASIC cartridge in the appropriate car­
tridge slot of your computer console.

How to Use This Manual 1

1

WHAT IS RS-232-C?

RS-232-C is a technical standard of the Electronic Industries Association (EIA).
Published in August of 1969, it is titled " Interface Between Data Terminal Equip­
ment and Data Communication Equipment Employing Serial Binary Data Inter­
change." The standard specifies electrical signal characteristics and names and
defines the functions of the signal and control lines that make up a standard inter­
face called RS-232-C.

Figure 1-1 shows, diagrammatically, the kind of hook-up that RS-232-C was de­
signed to sta ndardi ze. A data terminal is at each end of the communication link.
The data terminal either generates or receives data (or does both). It could be a
keyboard/sc reen " terminal " in the normal sense of the word; it could be a com~
puter; etc. The idea is that the data terminal is at the end of the communication link
- hence it is cal led " terminal. " However, the data terminal need not really be at
the end- you can think of "data terminal " as just the name of one o(the two ends
of a RS-232-C connection.

At the other end of a RS-232-C connection is the data set. In the example of Figure
1-1 , each data set takes data from the data terminal it is connected to and
sends/receives the data over the communications link. The most familiar example
of a data set is the modem (such as the ATARI 830 Acoustic Modem), which takes
data from a terminal and converts it for sending and receiving over a telephone
line.

The ATARI Home Computer with the interface module should be thought of as a
unit comprising a RS-232-C data terminal.

A full-duplex connection is one where data can be sent and received by both ends
of the RS-232-C connection simultaneously. In a half-duplex connection, data can­
not be sent by both ends at the same time. Therefore, one terminal must be able to
tell the other terminal , " I' m through now; it's your turn ." The second terminal then
sends a signal saying, " OK, here I come." This exchange is cal led "handshaking";
it is simply the sending and receiving of required signals to prepare each end of the
connection for the sending or receiving of data. Handshaking can be used in full­
duplex operation to tell the sending terminal to stop sending until the receiving ter­
minal can catch up.

What is RS-232-C? 3

4 What is RS-232-C?

The data-set/data-terminal distinction should be kept in mind because the
RS-232-C interface is directional. That is, each line in a RS-232-C interface has a
direction - one device drives the line (sends information) and the other receives
the information . Each line in an RS-232-C interface is defined as being driven by
either the data-set end or the data-terminal end .

DATA
TERMINAL

(TERMINAL)

RS-232-C
CONNECTION

DATA
SET

(MODEM)

DATA
SET

(MODEM)

DATA
TERMINAL

(COMPUTER)

DATA
COMMUNICATION

LINK
(TELEPHONE)

RS-232-C ~

CONNECTION

Figure 1-1 Communications Hook-Up Showing Role of RS-232-C

The RS-232-C standard defines some 20 signaling lines, or " circuits" as the stan­
dard refers to them. Most of them are optional and rarely used . Even with many
omissions and deviations from the standard, a link may st ill be referred to as RS-
232-C. It is more common to refer to the link loosely as " RS-232" or " RS-232
compatible."

The most commonly used RS-232-C lines are listed in Table 1-1. The table shows
the name of each line in the RS-232-C standard and commonly used mnemonics.

Table 1-1 The Most Common RS-232-C Circuits

LINE
(CIRCUIT)

NAME DIRECTION DESCRIPTION ABBREVIA liON

BA terminal-+set Transmitted data XMT
BB terminal+-set Received data RCV
CA terminal-set Request to send RTS
CB term i nal+-set Clear to send CTS
cc terminal+-set Data set ready DSR
AB (none) Signal ground
CF term i nal+-set Signal (carrier) detect CRX
CD terminal-set Data terminal ready DTR

It is common practice to use common names or abbreviations for the RS-232-C
signals, and not the two-letter names in the official standard.

Transmit (XMT) and receive (RCV) , for any given device, is usually relative to that
device. That is, data goes out of a device on XMT and comes in on RCV. To connect
two RS-232-C devices when given the common names of the signals, you should
connect XMT to RCV (in one direction) and RCV to XMT (in the other direction). If
one of the devices is wired as a data set and the other as a data terminal , then you
should connect DTR to DTR, DSR to DSR, RTS to RTS, and so on. If, on the other
hand, they are each wired as data terminals, you should be careful how things are
connected .

The Signal Ground connection must always be made. RS-232-C requires that the
ground potential of the two devices be equal. That is, their grounds must be con­
nected together. Devices for which this requirement cannot be met cannot be con­
nected via a RS-232-C interface.

Data terminal ready (DTR) is used by RS-232-C to allow the terminal to signal its
readiness to send or receive data. This is a signal to automatic answering modems
that they have permission to answer the ringing of the telephone line.

Data set ready (DSR) is used by the data set to signal its readiness to send or receive
data. This indicates that communications are established.

Request to send (RTS) is used by the data terminal to tell the data set it wishes to
send data . Some modems (Bell 202 for example) require this line to switch
directions.

Clear to send (CTS) allows the data set to signal its readiness to pass data from the
data terminal.

The carrier detect (CRX) line allows the data set to tell the data terminal that the
communication link is established. This often differs little from DSR, except that
DSR usually refers to " telephone off the hook" (answered) , whereas CRX means
something like " I hear the modem at the other end and we can talk now." When
CRX goes OFF, data set ready OFF usually follows a few seconds later, indicating
that the other end has " hung up. "

In normal operation, DTR, DSR, and CRX are all ON. For full-duplex operation RTS
and CTS are also both ON . However, it is often unnecessary to have all these lines
ON - either one or the other devices on the RS-232-C connection does not have
all the lines, or it is all right to ignore them (one of the properties of the RS-232-C
standard is that not all of it needs to be implemented - it's perfectly all right to
leave parts out). To operate the ATARI 830 Acoustic Modem, for instance, none of
the control lines need to be used. In fact, the ATARI 830 Acoustic Modem ignores
DTR and RTS, and it turns DSR, CTS, and CRX on and off together (with carrier) .

Note that the communication link shown in Figure 1-1 is not defined by RS-232-C.
In particular, this link seldom has more than the "equivalent" of XMT and RCV­
that is, only data lines and no control. However, as often as not this link is a full­
duplex link, so data can go both ways simultaneously. ASCII characters are the
most common data sent, so the data sent each way can be either "control " data or
" data" data.

What is RS-232-C? 5

6 What is RS-232-C?

•

With full-duplex operation, two devices can handshake with data in various ways.
Common terminals usually do not have an internal connection between the
keyboard and display (or they have a switch, usually called half/full duplex, to
make or break this internal connection) so when talking with a computer in full­
duplex mode (the most common mode) , the computer at the other end "echoes"
(sends back) each character to be displayed as it is typed. This allows you to see ex­
actly what the computer at the other end receives. It also allows the computer at
the other end to decide NOT to let you see what you have typed, as in "sup­
pressing" the echo of a password.

In half-duplex operation, somewhere along the com municat ions path data may
pass in only one direction at a time. Not all parts of the communications path need
be half duplex, but if any part is, then the whole system will probably have to send
data only one way at a time. In half-duplex mode, the computer at the other end
does not echo back what you type. In this case, in order to see what you type, the
connect ion from keyboard to screen must be set local ly; that is, set your terminal to
" half duplex ."

Note: The ATARI Telelink™ I cartridge does not have the equivalent of a half/full
switch. However, the ATARI 830 Acoustic Modem does have such a switch, and
when it is placed in the half-duplex position, it echoes any data sent out over the
phone back to the computer console.

A common handshake that requires full duplex is the XOFF/XON (transmit
off/transmit on) handshake. The receiver of data can send XOFF to the sender to
ask the sender to pause the data transmission and XON to resume. This allows the
user of a screen terminal to stop the data so he can read the screen, and it allows a
computer that is receiving data from another computer to effectively control the
rate at which it can accept data.

2

ATARI BASIC AND THE ATARI 850
INTERFACE MODULE

This section will show you an example of how the interface module is pro­
grammed. Using ATARI BASIC, two ATARI Home Computer Systems will be pro­
grammed to let one user talk to another user through ATARI 830 Acoustic Modems.

Let's start simply- just a program to send a message line, then receive a line, and
so on. The main part of such a program might be:

100 INPUT MESSAGE$

110 PRINT #5; MESSAGE$

120 INPUT #5, MESSAGE$

130 PRINT MESSAGE$

140 GOTO 100

Here, unit #5 is assumed to have been opened to the RS-232-C port attached to the
modem . Thus, line 100 gets a line from your keyboard , line 110 sends it to the
modem , line 120 gets a line from the modem, and 140 prints that on your television
screen.

Here's the whole program:

10 DIM MESSAGE$(120)

20 OPEN #5, 13, 0, " R1 :"

30 XIO 40, #5, 0, 0, " R1 :"

100 INPUT MESSAGE$

110 PRINT #5; MESSAGE$

120 INPUT #5, MESSAGE$

130 PRINT MESSAGE$

140 GOTO 100

Line 10 allows space for the variable MESSAGE$ (used to both send and receive).
We've assumed the modem is attached to port 1. Line 20 opens the RS-232-C port
1, allowing input and output, and enabling Concurrent Mode 1/0. Concurrent
Mode 1/0 is required for input (see Sections 4, 5, 6, 9, and 10, and Appendix B for
more details about Concurrent Mode 1/0) . Line 30 turns on the Concurrent Mode
1/0. Once the Concurrent Mode 1/0 is started, you may INPUT and/or PRINT at
any time to the concurrent RS-232-C port; but no other 1/0 to any peripheral is
allowed until Concurrent Mode 1/0 is stopped by closing the port. Input/output to
the keyboard and screen is allowed while RS-232-C Concurrent Mode 1/0 is active,
and that is what we' re doing here, so there's no problem .

BASIC and the ATARI 850 Interface 7

HOW TO USE
THIS PROGRAM

How is this program used? The first thing to know is that since it uses an RS-232-C
port, the RS-232-C 1/0 handler for the RS-232-C ports must be loaded into the
ATARI Home Computer System . This is done automatically for you by the com­
puter and the interface module, but you have to turn on your equipment in the
right order. Specifically, the interface module must be turned on before the
computer console (or at the same instant) , or the computer will not know the inter­
face module is there. The RS-232-C handler can only be loaded when the computer
console is turned on. See Section 3 for more details .

After tu rning your computer on correct ly, you can type in the program. Or, the
program can be loaded from tape or diskette. The person on the other end does all
these things, too, but there' s one sma ll difference. O ne of you has to write his pro­
gram to listen first, and the other to talk first. One way to do this is by addi ng the
statement:

40 GOTO 120

to one of the programs. This way, the program starts reading from the modem
instead of the keyboard .

You're ready to go! Get on the phone to each other. One of you sets his modem to
Answer mode, and the other sets his to Originate mode (it doesn't matter which).
Both modems should be set to Full Duplex. Note that when the Answer modem is
turned on , it starts to squeal. This is the same squea l you hear ove r the phone when
you call up a timesharing service, and it is a signal to the Originate modem to sta rt
communications. To avoid the bother of li stening to this, don't turn the modem on
until you are ready to start talking (on ly the interface module needs to be turned on
before the computer console- it's. all right to turn on the modem later). Now put
your phones in the modem crad les.

Th e person with the send-first program types a line (up to 120 cha racters), ending
with a i;ljil@l . Then the other can answer ... and so on.

Th e listener will notice something odd right away: nothing appears on hi s television
screen for a while, and then POOF! there's a message. Here's why: The sender's
program gets to the INPUT statement, line 100. BASIC waits fo r input from the
keyboard , and doesn't go on to PRINT to the modem (line 110) until the l;ljli@j is
typed by the sender. Meanwhile, the listener's program is also doing INPUT (line
130), and that INPUT won ' t complete until an EOL (End of Line) is received from
the sender. (EOL is similar to 1;11"1;111, and is used inside the computer to mark the
end of a line .) EOL is the last character sent by PRINT in line 110. So the sender's
message doesn ' t start over the phone until he presses l;ljil@j, and the listener
doesn't see the message until it's completely received !

How is the program stopped? (Note that the program is an infinite loop.) Try the
l1li!D key. You ' ll find it doesn' t work, because the l1li!D key is turned off
whenever Concurrent Mode 1/0 is active. In general , you should always try the
mD key first whenever you want to stop a BASIC program, even if you don ' t ex­
pect it to work. But, if it doesn' t work, don't be upset- just press the ii1MM1;1}1ji
key (Note: O n ea rly versions of the interface module, the l1li!D key is not disabled
during Concurrent Mode 1/0 .)

8 BASIC and the ATA RI 850 Interface

IMPROVING
THE PROGRAM

You may find the limitation of one line at a time bothersome. Also, there is no way
to interrupt and get the talker's attention when you're the listener. An improved
version of the program should allow either of you to talk at any time, and send
characte rs immediately as they' re typed. This improved program is somewhat
more complicated than the simple program you've seen, and some background is
needed to understand it.

The basic idea is to use GET and PUT instead of INPUT and PRINT. GET and PUT
work with single characte rs (represented by the character's numeric equivalent in­
side the computer), and characters are immediately available to BASIC without
having to wait fo r the li!Jill;lli from the keyboard or EOL from the modem. (Note
that when you use GET, the l;liiil;lli key produces the code for EOL, but this is not
the same as "ending the input line" which is the meaning of l;iiii@i when using
INPUT.)

GET shares a problem with INPUT: BASIC waits until all the input is availab le. Ad­
mittedly GET is only looking for one character but until it arri ves, BASIC waits . So
suppose your copy of the program is executing the GET from the modem link to
you r friend , and he hasn ' t typed anything. This means you can't type, because your
computer isn ' t reading your keyboard!

The trick is to avoid actually doing the GET until you know a character is there . For­
tunately, there is a way to check for a character before GET, both for the keyboard
and for the concurrent RS-232-C port. Thus the "flow" of our improved program
will be like this:

100 IF no character from keyboard yet THEN 200

110 GET character from keyboard

120 PUT that character to the modem

200 get STATUS of the modem buffer

210 IF character not available THEN 100

220 GET character from modem

230 PUT that character to television screen

240 GOTO 100

The program continually alternates between checking for a character from the
keyboard and one from the modem, and in each case only gets and sends along a
character if one is ready.

(You may wonder how a character can become available even when BASIC has not
yet tried to GET it . The Operating System of the computer, using techniques of " in­
terrupts" and " buffering," accepts and saves the characters as they appear. Then ,
when BASIC does the GET, the saved character is handed over to BASIC from the
Operating System. The keyboard has a one-character buffer, that is, only one
character is saved this way. If you press another key before BASIC receives the first
character, BASIC will find the second character you typed and the first is lost . The
defau It buffer for each RS-232-C port holds 32 characters; that is, BASIC can fall 31
characters behind before anything is lost. You can set up a buffer larger than 32 if
you need it - see Section 9 for more details.)

BASIC and the ATARI 850 Interface 9

INTERFACE
MODULE
CAPABILITIES

Thi s prog ram ca n be used to " talk" w ith a computer other than another ATA RI
Home Computer. If you get double characte rs w hen you are entering data in to the
other computer, then delete PUT #3, KEY in line 110.

In effect, these two programs have changed your ATA RI Home Computer into a
te letypewri te r, using the modem and interface module. W ith the latter progra m,
you can access computer networks, such as THE SOURCE, AM ERI CA' S IN FORMA­
TI ON UTILITY* and COMPUSERVE* *. The program is not intended to replace th e
Telel ink™ I ca rtrid ge, as it will prin t all the contro l characte rs to your te levision
sc reen and has no provision fo r using an ATA RI Printer.

Both programs ca n be helpful in lea rning how to use, and get more out of, the
ATARI 850 Interface Module.

Th e interface module has many capabilities not mentioned in the above examples.
Th e rest of thi s manual contains in formation about the interface module and how
to take adva ntage of some of th ese capabiliti es. After you ' ve read more about the
interface module, look at the Section 8 examples of how to use it.

* THE SOU RCE and AMERICA' S INFORMATION UTILITY are service marks of Source Telecomputing Corporation, a
subsidia ry of The Reader's Digest Associa ti on, Inc.

~

**COMPUSERVE INFORMATION SERVICE is a registered tradema rk of CompuServe, Inc., an H & R Block company.

BASIC and !he A TAR / 850 Interface 11

So much for the general idea- now for the details. First of all, GET does not work
from the Operating System's screen editor; to use GET you must open the
keyboard (K:). For the PUT commands to the television screen, you can use either
the screen device (S:) or the editor device (E:). (You might want to experiment with
E: and S: to see which suits your needs -they differ in their treatment of the editing
keys such as I mmm I and the cursor movement keys. See the ATARI
BASIC Reference Manual for details.) Here, we' ll use the editor.

To check whether a key has been typed, PEEK at the keyboard buffer. It is in
memory at location 764 (decimal), and has the value 255 whenever a key has not
yet been pressed. This location is reset to 255 when you GET from the keyboard.

Here's the improved program:

10 LET KB = 764: NO KEY= 255

20 LET MODEM= 747: NOCHAR= 0

30 OPEN #5, 4, 0, "K:"

40 OPEN #2, 13, 0, "R1 :"

50 OPEN #3, 8, 0, "E:"

60 XIO 40, #2, 0, 0, "R1 :"

100 IF PEEK(KB) =NO KEY THEN 200

110 GET #5, KEY: PUT #3 , KEY

120 PUT #2, KEY

200 STATUS #2, XXX

210 IF PEEK(MODEM)= NOCHAR THEN 100

220 GET #2, CHAR

230 PUT #3, CHAR

240 GOTO 100

Lines 10 and 20 of this program set up some symbolic constants. The variables (sym­
bols) are given values which will not be changed as the program runs (they're con­
stant)- but see how much more readable these variables make lines 100 and 200.
Lines 30 through 60 open the keyboard (K:), modem (attached to port R1 :), and
screen editor (E:), and start up the Concurrent 1/0 through R1. The rest of the pro­
gram is just like the "flow" program shown before, except it's been turned into real
BASIC. Note the extra PUT in 110 to place your keyboard typing onto your own
television scree n.

Lines 200 and 210 work together. First 200 gets the status of port R1: (which was
opened through IOCB #2). Part of the status is the count of characters that have
been received and placed in the receiving buffer, and that count is in location 747
(decimal) after the STATUS check. Line 210 checks 747 to see whether it's zero or
not - if not, line 220 gets a character from the buffer.

This program is used just like the simpler one. Since either of you can talk at any
time, you can both use the same program - it's not necessary to modify one of
them to listen first. If you both type at the same time, though, your two messages
will get mixed together. You'll have to learn to take turns typing, but allow for the
other to interrupt if he wants. One character you might find useful is the bell
(buzzer), which is typed as &I 2.

10 BASIC and the ATARIBSO Interface.

TURN-ON
OPERATION

WITHOUT A
DISK DRIVE

WITH A
DISK DRIVE

3

HOW THE INTERFACE MODULE
INTERACTS WITH THE SYSTEM

The Operating System (OS) of the ATARI Home Computer does not contain the in­
formation necessary to operate the interface module SERIAL INTERFACE ports or
the ATARI 810™ Disk Drive. This information comes from the peripheral itself.

The computer asks for the data when it is turned on. If the peripheral is turned on
before or at the same time as the computer, it will answer the computer's request
and send the necessary information . This turn-on and initialization procedure is
called "automatic bootstrap," "autoboot," or just "boot." The term comes from
the expression " pulling yourself up by your bootstraps," indicating that you start
with nothing and reach your goal by your own efforts.

The bootstrap information contained in the interface module is called the RS-232-C
"ha ndler." The disk drive information is cal led the Disk Operating System (DOS).

When the power is turned on to the computer console, the computer issues a disk
drive request. If there is no disk drive in the system (o r if the disk drive is turned off),
the interface module will respond to the disk drive request. The computer then
loads the RS-232-C handler bootstrap program from the interface module, just as
though it were reading the program from a diskette. The bootstrap program is then
run, and it gets the RS-232-C handler from the interface module and relocates it in­
to the computer's RAM. The memory occupied by the bootstrap program is then
freed (but the handler remains).

If the disk drive is set for Drive 1, it will respond to the disk drive request when the
computer console is turned on. The interface module will not respond. A special
start-up program is loaded from the diskette and this program then loads the
handler from the interface module.

In the ATARI 810 Master Diskette, CX8104, this job is handled by a file ca lled
AUTORUN.SYS that is supplied with your DOS II Diskette. Read the instruct ions
supplied for details on AUTORUN .SYS.

Caution: The RS-232-C handler shares RAM space with a portion of the DOS
utilities. When DOS is called (by typing DOS and pressing l;ljiii;lll from BASIC) ,
DOS will overwrite the RS-232-C handler and destroy it. To protect against this, add
MEM.SAV to your diskette (item Non the DOS Command Menu). Then, when you
call DOS, the RS-232-C handler will be saved with your program.

Note: ATARI 810 M aster Diskette, Model CX8101 , does not contain the
AUTORUN .SYS file and cannot be used with the interface module RS-232-C
SERIAL INTERFACE ports.

How the Interface Module Interacts With the System 13

USING
A PRINTER

As a general rule, turn on any peripheral that you intend to use with your ATARI
Home Computer before turning on the computer . This allows those devices that
need booting to do so.

There are exceptions to this rule, though. For example, since an ATARI Printer does
not use the SERIAL INTERFACE 1/0 ports of the interface module, it can be turned
on at any time, as can the ATARI 830 Acoustic Modem.

In the case of the ATARI Printer, turning the computer on before turning on the in­
terface module saves RAM, as the RS-232-C handler takes over 1 1/2 K-bytes of
memory. The RS-232-C handler is not needed to use an ATARI Printer attached to
the printer port of the interface module. To see how much memory can be saved,
boot your system with the RS-232-C handler and type ?FRE (0). This will give you
the amount of free memory with the RS-232-C handler loaded into memory.
Repeat the action without loading the RS-232-C handler. The difference is the
amount of RAM saved by not using the handler when it is not needed.

14 How the Int erface Module Interacts With the Sys tem

IN PUT/OUTPUT
CONTROL
BLOCK

ACCESSING
AN RS-232-C
DEVICE

4

PROGRAMMING THE
SERIAL INTERFACE PORTS

As with any peripheral device attached to an ATARI 400™ or ATARI 800™ Home
Computer, the ATARI 850 Interface Module requires a program to tell it what to
do. This program may be pre-written or you may want to use the SERIAL INTER­
FACE ports from your own BASIC program. In the case of pre-written programs,
such as the ATARI Telelink I cartridge, read the instructions for using that particular
program with the interface module.

Using softwa re instructions to set th e spec ific values for the parameters of the port
is ca lled "configu ring the port." The configurat ion and use of the SERIAL INTER­
FACE ports on the ATARI 850 Interface Module can be complex. Many details must
be remembered and comp licated procedures must be followed exactl y. This sec­
tion gives an overview of the effects of commands and their relation to each other.

IOCB is an acronym for Input/Output Control Block. It is that portion of the com­
puter's Operating System (OS) that controls the input and output of data within the
system.

An IOCB allows the computer to keep track of the 1/0 functions, both its own and
the user's . Therefore, an IOCB acts as an interface between the user and the com­
puter 1/0 system.

From ATARI BASIC, the user has seven IOCBs available to use. These are
numbered 1 to 7. IOCB #7 is used by the OS for LPRINT and and IOCB #6 is used
for GRAPHICS MODE functions . These IOCBs should not be used with the inter­
face module if you have graphics or line printer commands in your BASIC program.
To be on the safe side, specify IOCB #5.

STEP 1 -CONFIGURE THE SERIAL INTERFACE PORT

The first thing to be done to access an RS-232-C device is to configu re the SERIAL
INTERFACE port to which the device is connected by using instructions in your
program. In configuring the port you may set the fo llowing:

• Baud rate - bits-per-second sent/received
• Number of bits-per-word sent/received
• Number of stop bits-per-word sent
• Whether the incoming control signals DSR, CTS, and CRX are monitored

• Whether input parity is checked
• Whether output parity is set
• Whether Line Feed is added after every Carriage Return sent
• Translation of the word being sent or received (three types of translation)

• How the outgoing contro l signals DTR and RTS are used

These are shown as three groups, co rresponding to the three configuration com­
mand s; otherwise, the division into groups is arbitrary.

Programming the Serial Interface Po rts 15

If you do not configure the port, the system sets defau It values of the port variables,
as follows:

• 300 Baud
• 8 bits-per-word
• 1 stop bit-per-word transmitted
• Input parity is not checked
• Output parity (bit 7) is set to zero
• Line feed is not added after every Carriage Return sent
• Light-translation
• Outgoing control signals DTR and RTS are set off

If the defau It (preset option) is what you want, then the parameters of the port con­
figuration do not have to be set.

Each of these groups of conditions can be changed with a configuration command
and each port can be configured independently. Configuration of one port has no
effect on the configuration of any of the other ports.

The CONFIGURE BAUD RATE command is used to set the Baud rate, number of
bits per "word," and the number of stop bits to transmit. This command also
establishes the monitoring of DTR, CTS, and CRX. The CONFIGURE TRANSLA­
TION MODE command will set up the translation mode, input and output parity
modes, and the automatic appending of LF (Line Feed) afte r CR (Carriage Return) .
The CONTROL command will let you turn the DSR and RTS control lines on or off.

STEP 2- USING THE SERIAL INTERFACE PORT

Once the SERIAL INTERFACE port is configured, you can OPEN the port for 1/0.
There are two fundamentally different ways of doing 1/0 to a SERIAL INTERFACE
port: Block Output Mode and Concurrent Mode. As its name implies, the Block
Output Mode can only be used for output from the computer to your RS-232-C
compatible device. The Block Output Mode is simpler to use, al lows use of the
DTR, CTS, and CRX monitoring, and carries none of the concurrency restrictions of
the Concurrent Mode. Concurrent Mode 1/0 is required for input from the RS-232-
C compat ible device and is required fo r fu ll-duplex (input and output at the same
time) operation.

Block mode output is performed by simply doing normal BASIC PRINT or PUT
statements to the appropriate SERIAL INTERFACE port (after opening it, of course).

Your output characters will be placed in a 32-byte buffer and transmitted to the in­
terface module and then to your RS-232-C compatible device. This is done when:

• The buffer fills up
• You close the channel to the RS-232 port
• A CR (dec imal 13) is placed in the buffer

16 Programming the Ser ia l Interface Ports

32-BYTE
BLOCKS

RS-232-C
COMPATIBLE

DEVICE

INTERFACE MODULE

32-BYTE
BUFFER

PRINT OR PUT

Figure 4-7. Block Output Mode 110

On occasion, you may want to force the sending of the information in the buffer.
For example, if you have specified the Append LF translate option, the LF will be
sent at a different time, later than the CR. You may want to send the LF immediately
if the external device is a terminal. As another example, if you are using the DTR,
CTS, or CRX monitoring feature to avoid sending more characters to a device than
it can handle, you can use the FORCE SHORT BLOCK operation to send your
characters one (or a few) at a time. That way you can ensure that the device won ' t
lose characters you send it because it became not ready in the middle of an output
block .

The FORCE SHORT BLOCK operation is only valid if you are using Block Output
Mode. If you are using Concurrent Mode, you cannot use this command.

If you issue a FORCE SHORT BLOCK command when the buffer is empty, no
action will be taken. Doing this is not an error. Since you can alternate output to
two SERIAL INTERFACE ports when using Block Output Mode, you can also alter­
nate FORCE SHORT (?LOCK commands from one port to another. The ports must
be opened through different IOCBs, of course. The BASIC command for FORCE
SHORT BLOCK is listed in Appendix B.

Programming the Serial Interface Ports 17

Concurrent Mode input, or Concurrent Mode (fu ll duplex) 1/0, is performed by first
opening the file for Concurrent 1/0 , executing a START CONCURRENT MODE 1/0
operation , and then doing normal BASIC INPUT, GET, PRINT, and PUT operations
to that port. In Concurrent Mode 1/0 , after you have performed the START CON­
CURRENT MODE 1/0 command , 1/0 is going on at the same time BASIC is ex­
ecuting other commands for you. For example, if your RS-232-C compatib le device
is sending characters to the computer through the interface module, after the
START CONCURRENT MODE 1/0 those characters wi ll be saved for your program
as they arrive into a holding buffer by the computer. If you subsequently perform
an INPUT statement to that port, the computer will really just look in that buffer for
the input data.

LIMITATIONS ON PORT CONFIGURATIONS

The ports have different signals available, as shown in Table 4-1.

Table 4-1 Available Signals on Ports 7, 2, 3, and 4

PORT PORT 2,
1 3

XMT XMT
DTR DTR
RTS

RCV RCV
DSR DSR
CTS
CRX

For 8-bit operation, the following limitations are imposed:

• Input requires Concurrent Mode 1/0.

PORT
4

XMT

RCV

• Output allows the option of Concurrent Mode 1/0 or Block Mode 1/0.
• Full-duplex operation requires Concurrent Mode 1/0.
• Full-duplex supports all Baud rates.

For 7-, 6-, and 5-bit operation , the following limitations are imposed :

• Full-duplex is not allowed.
• Half-duplex input can be in Concurrent Mode 1/0 only.
• Half-duplex output can be in Block Mode only.
• Input and output can be only 300 Baud or less.

Other limitations on port configurations are imposed by using a port in the Concur­
rent 1/0 mode. These limitations are described in this section under Restrictions.

If any default condition is to be changed , the port must be configured before it is
used. Configuring a port is accomplished by one or more commands described in
this section. There are three principal commands . Each command is concerned
with several configuration variables. The parameters of the commands are coded
to signify different values of the several variables. The details of the coding are
presented in Appendix B.

18 Programm ing the Serial interface Ports

RESTRICTIONS

A particular default condition is Block Output Mode in which, of course, you can­
not input data. To input from a port you must put it into Concurrent Mode 1/0 with
the START CONCURRENT 1/0 command. Thus, the START CONCURRENT 1/0
command is a configuration command. It is different from the other configuration
commands in that the port to which it applies must be opened first. Moreover, it is
much more complex than other configuration commands. You should think of the
START CONCURRENT 1/0 mode command as being a configuration command in
one aspect and as having more important effects on other aspects of using the con­
figured port and, indeed, all the ports.

You must observe certain precautions when you use Concurrent Mode 1/0. The
only 1/0 operations that are permitted with this mode are GET, INPUT, PUT,
PRINT, STATUS and CLOSE to the opened port, and 1/0 to the keyboard and
screen (which do not involve any peripheral device). Input/output to any other
peripheral is not allowed while Concurrent Mode 1/0 is active.

Using one port for Concurrent 1/0 prevents the use of any other port of the inter­
face module, including the PARALLEL INTERFACE (printer) port. The other ports re­
main inaccessible until you terminate the Concurrent 1/0 Mode. You terminate
Concurrent 1/0 by closing the port with the CLOSE command.

Using any of the SOUND commands during Concurrent Mode 1/0 can have
disastrous effects, from changing the Baud rate to stopping 1/0 completely before
your data is transferred. If you must use SOUND commands, write your program
so that the IOCB you are using for Concurrent Mode 1/0 is closed before the
SOUND command.

As a safety precaution, the 1iJi1D key is disabled during Concurrent 1/0 when
using the interface module. This is to prevent certain errors from harming your
work sessions. You may use the 1iJi1D key as you normally would to stop your pro­
gram, but be prepared for nothing to happen if Concurrent 1/0 is active. If that
should be the case, use JiiOiiMhfiiil .
Note: Jitii#bi;IMiil can mess up your disk files. Use JUii@M;!Miil only after trying
limm· The BREAK key was not disabled on early versions of the ATARI 850 Inter­
face Module. These early versions can be upgraded at your local Authorized ATARI
Computer Service Center . The ATARI TeleLink I cartridge will transmit a break
signal when you type EmiD limm· Refer to your ATARI TeleLink I Operators
M anual for details.

During Concurrent 1/0, incoming data may overflow the computer's buffer. In that
case, data is lost. Methods for avoiding loss of data in this way are described in Sec­
tion 10.

Port configuration cannot be done after having started Concurrent Mode 1/0. For
that reason, specify port parameters (with XIO 34, XIO 36 and XIO 38) before enter­
ing Concurrent Mode 1/0.

Once set, configured parameters will not change until you change them with an
appropriate command . Pressing JitifMM;IMii' on the computer will not reset any
parameter to its default value. Turning off the power on the interface module may
reset some parameters but not others . This action may result in peculiar operation
because information about some of these parameters is saved both in the computer
and in the interface module. Turning off the power to the interface module during
a session with the computer is not recommended.

Turning off the power to the computer also resets the interface module. When you
turn the computer on again , and the interface module boots, all of the above
parameters will have reverted to their preset default values.

Program ming the Serial Interface Ports 19

5

SffiiNG THE BAUD,
WORD SIZE, STOP BITS,
AND READY CHECKING

Common convention and other standards have settled on a fairly universal serial
data transmission convention. When data is not being sent, the data line will sit idle
in the MARK state. A data character (sometimes cal led a transmission WORD) is
signalled by one START BIT, represented by the SPACE state. It is followed by the
data bits, each bit being represented by SPACE for 0 and MARK for 1. The word is
terminated by 1 (sometimes 2) STOP BIT(s), represented by the MARK state. The
next word can immediately follow with its start bit. If it does not, the line stays idle
in the MARK state. Effectively, the stop bit lasts indefinitely.

The most common transmission word size is 8 bits. When sending ASCII , which is a
7-bit code, the 8th bit usually represents the parity, is just set to 1 or 0, or is used as
a marker bit of some sort. ASCI I is very rarely sent in 7-bit words. The interface
module supports 7-bit words for these cases and can also be used for communica­
tion with 7-bit or 6-bit codes such as BCD (with or without parity). Five-bit words
are also allowed so you can communicate with old Baudot code teletypes for
radioteletype and similar uses.

The receiver can receive all the bits in the word because it knows when each will
arrive. Each bit is the same du ration as established by the Baud rate (bits-per­
second rate).

The CONFIGU RE BAUD RATE command allows you to set the Baud rate, "word "
size, number of stop bits to transmit, and enab le or disable checking of DSR, CTS,
and CRX. The command may be issued through an open IOCB to the RS-232-C
SERIAL INTERFACE port, or through an IOCB which isn ' t bei ng used. If you have
opened an IOCB to the port you are configu ring, you must use that IOCB. You can­
not configu re any port if a Concurrent Mode 1/0 operation is active.

The CONFIGURE BAUD RATE command looks like this in BASIC:

XIO 36, #IOCB, Aux1, Aux2, "Rn:"

The 36 makes this a CONFIGURE BAUD RATE command.

The #IOCB is the number of the IOCB that BASIC should use to execute the com­
mand. The IOCB should either be open to the port you are configuring, or shou ld
not be open at all. No Concurrent Mode 1/0 should be active when you issue this
command.

Aux1 is a number or expression that specifies the Baud rate, "word" size, and
number of stop bits to send with each "word ." For each of these, pick a number
from Tables B-1 , B-2, and B-3 in Appendix B, and then add the numbers together to
form Aux1. You may add them yourself or you can let BASIC add them for you. For
example: XIO 36, #1, 10 + 0 + 128, 0, " R:" and XIO 36, 138, 0, "R:" both
specify the same thing.

Setting the Baud, Word Size, Stop Bits, and Ready Monitoring 21

Aux2 is a number of expression that spec ifi es whether or not the interface module
should check Data Set Ready (DSR), Clear to Send (CTS), and/or Carrier Detect
(CRX) when a Block Mode output or START CONCURRENT MODE 1/0 operation is
performed. If you ask to have the interface module check one or more of these, the
interface module wi ll return error status if th e line(s) checks is not ON. The error
status is returned from the Block Mode output attempt or from the START CON­
CURRENT Mode 1/0 attempt. The condition of the line(s) being checked does not
matter at the time you do the CONFIGURE BAUD RATE command to turn on the
chec king; the line(s) will be checked on ly when the Block Mode output or START
CONCURRENT 1/0 is attempted . You may TRAP th e error and program ATARI
BASIC to take the action you des ire. See Table B-4 in Appendix B for values of
Aux2 .

The last XIO parameter, Rn: , specifies which SERIAL INTERFACE port of the inter­
face module you are configuring. For n put 1, 2, 3, or 4, just as you would in the
OPEN command.

Note that the default (p reset) values of Aux1 and Aux2 for all four ports are ze ro,
co rresponding to 300 Baud , 8-bit words, one stop bit transmitted , and no checking
of DSR, CTS, or CRX.

You shou ld know the following things about this command :

The configured parameters will stay as you set them until you either reset them or
until you reboot the system (turn the power off and back on) . The Jifil@l;lf1jl key
will not reset any of these parameters.

You may configure each RS-232-C SERIAL INTERFACE port independently.

If you specify 8-bit words, there are no restrictions on operation of the port.
However, the following restri ctions apply to 7-, 6-, and 5-bit words:

• Full-duplex is not allowed
• Half-duplex input can be in Concurrent Mode 1/0 only
• Half-duplex output can be in Block Mode only
• Input and output can be only 300 Baud or less

If you specify 7-, 6-, or 5-bit words, there is no restriction on the number of stop bits
you may specify. Note that most applications of these word sizes will probably be
to devices that require more than one stop bit - you should specify two. Each
word sent or received will be converted from, or to, an 8-bit byte within the com­
puter by ignoring the most signi ficant bit(s). This will very likely interact with the
translation operation and, in particular, there may be no way you can receive an
EOL. If this is the case, you cannot use the BASIC INPUT statement to read the port,
and you must retrieve characters one at a time using GET. More details will be
found in Section 10.

If you specify that you want the interface module to check DSR, CTS, and/or CRX, it
will check them whenever you try to sta rt Concurrent mode 1/0 and whenever you
try to send a block of data in block output mode. If any one of the lines you asked
to be checked is not ready (OFF) , th en the Concurrent Mode 1/0 will not be started
or the block of data will not be sent . Th e interface module will then return ERROR
139 (device not acknowledged) to BASIC, and you may TRAP the error and take
corrective action. Following the TRAP, you may perform a STATUS request from
the interface module which will provide bit 4 in Location 746. See Section 10 for
details.

22 Selling the Baud, Word Size, Stop Bits, and Ready Monitoring

Note that CTS and CRX are not supported on ports 2, 3, and 4, and that DSR is not
on port 4. The interface module behaves as if they are really there, however, and as
if they are always ready (ON).

You may look at the states of DSR, CTS, and CRX any time that Concurrent Mode
1/0 is not active (you must have an IOCB open to the port) by issuing a STATUS re­
quest for the port. Thus, enabling this automatic checking of these lines is not the
only option available to you , and you may prefer checking them directly with
STATUS. See Section 10 for details.

Se tting the Baud, Word Size, Stop Bits, and Ready Monitoring 23

6

SETTING THE TRANSLATION
MODES AND PARITY HANDLING

The interface module handler can be configured to perform certain types of code
conversions (translations) and do parity generating and checking for you. These
two operations interact with each other. For this reason , they will be described
together in this section. The various options you may select for each are specified
by executing the same command- CONFIGURE TRANSLATION AND PARITY.

Three factors must be kept in mind when setting up code translations. Translation ,
of course, is one of them, since it results in (possibly) changing one code into
another. Parity generation and checking also may result in changing one code into
another. The third factor to remember is the word size you are trans­
mitting/receiving. Inside the computer, all words are the same as bytes; that is, all
words are 8 bits. If you are sending/receiving 7-, 6-, or 5-bit words, these shorter
words have to come from 8-bit computer words by chopping out some bits, or
expanded into 8-bit computer words by adding some bits. These operations are
similar to changing one code into another.

Each of these three possible code changes takes place separately from the others,
one at a time. For output, translation comes first, followed by parity generation,
and finally truncation (shortening by leaving bits off). Of course, at each stage a
change may not occur, depending on what selection of options you have con­
figured and depending on which character (code) the computer is sending. For ex­
ample, if you have configured 8-bit words, the truncation operation does nothing.
For input, the order of code changing is expansion (from short words to 8-bit
words), followed by parity checking, and finally translation.

At each of the three stages, a code change may occur. If a change does occur, then
it is the changed code that will be operated on in the next stage. For example, (in a
particular configuration of translation and parity options) if you output an AT ASCII
EOL (End-of-Line), it would first be translated to an ASCII Carriage Return (CR) and
then parity would be generated for the CR. The parity step operates on the result of
the translation step, in this case the CR.

Note: ASCII is an acronym for the American Standard Code for Information Inter­
change. In ASCII , each letter (both upper- and lowercase) , numeric code, and con­
trol key has a number assigned to it. In order for the ATARI Home Computer to
display its spectacular screen graphics, the ATARI Computer engineers devised a
modified version of ASCII , which is called AT ASCII. In AT ASCII , the codes used for
certain ASCII control characters have been assigned to ATARI Computer graphics
characters. Appendix A contains a conversion chart.

There is one other translation option which is very specific; namely, the option to
have an ASCII Line Feed (LF) sent after each transmitted CR. This code change oc­
curs at the translation step. Consequently, the generated LF will go through the
parity and truncation (small word) phases just like the CR.

Setting the Translation Modes and Parit y Hand ling 25

TYPES OF CODE
TRANSLATION

You have three options from which to choose: no translation at all, "Light" "transla­
tion, or "Heavy" translation. Whichever option you choose will apply both to in­
coming and outgoing characters. The no-translation option is just what it says - no
change is made to the characters, whether being received or sent. This statement
applies only to the translation step, of course- you can still get changes from pari­
ty and small words. The no-translation option is useful if you are going to do your
own special processing on the characters you are sending and receiving. This can
be particularly useful in the small word situations, since many of the cases where
small words are used do not (or cannot) involve ASCII. You may also want to use
the no-translation option if the RS-232-C compatible device you are com­
municating with understands AT ASCII. An example of this is communication with
another ATARI Home Computer via modem.

No matter which translation option you choose, if you use a BASIC INPUT state­
ment to read data, the data must have an AT ASCII EOL character at the end of each
line. This requirement applies AFTER all translation. Thus, if you select the no­
translation option, your incoming data must either contain EOLs or you should use
GET instead of INPUT. Remember that using short words and checking parity affect
data coming in , so you may still need to use GET.

Heavy and Light translation are two ways to convert between ASCII and AT ASCII.
In either translation mode, the AT ASCII EOL (9B in hexadecimal , 155 in deci!)lal) is
converted to and from the ASCII CR (OD in hex, 13 in decimal). In the case of out­
put, EOL is changed to CR; if you also selected the Append LF option, EOL is
changed to CR followed by LF, that is, the translation function produces two
characters out for one in. On input, a CR will be translated to EOL. Both Heavy and
Light translation modes assume ASCII in the outside world and they assume
AT ASCII in the computer. ASCII is treated as a 7-bit code; that is, the eighth (most
significant) bit is always treated as if it is zero. On input, then, if you select Heavy or
Light translation , the eighth bit of each word is cleared to zero . On output, the
translation step will set this bit to zero.

Light translation performs the fewest changes between ASCII and AT ASCII. The
assumption is that you wish to work with AT ASCII within the computer but treat it
as if it were really ASCII. Note, for example, that the ATASCII graphics codes are
the same numerically as some ASCII control codes (1 - 26). So for input, the
character has its high bit stripped (set to zero) , and that's all- except if the code is
found to be a CR, it is changed to an EOL. For output, if the character being sent is
EOL it is changed to CR; then, no matter what the character is, the high bit is set to
zero . Light translation is the preset default mode.

Heavy translation is a more thorough translation mode. Here the assumption is that
if there is no direct correspondence between the character in ASCII and AT ASCII,
then the code should not be translated. So for input, after the high bit is cleared to
zero, if the character is CR it is changed to EOL; otherwise, the character is checked
to see if it is the same in ATASCII as in ASCII. If it is not, it is translated to the
Won't-Translate character. Specifically, if the code for the ASCII character is less
than 32 decimal (i.e., the character is a control character) or greater than 124
decimal (7C hex) it will be translated to the Won't-Translate character. If the steps
preceding Heavy translation leave the most significant bit (bit 7, corresponding to
parity) set to 1, the character has a value greater than 124 and therefore, it won't
translate. Thus, heavily translated ASCII corresponds to the printable characters
from blank through vertical bar. The Won' t-Translate character is specified by you
in the CONFIGURE TRANSLATION command. If you do not specify it, the preset
default value for it is zero (ATASCII graphic heart).

26 Selling the Translation Modes and Parity Handling

PARITY

SHORT WORD
CONVERSION

On output, Heavy translation converts EOL to CR, and will output any cha racter
whose ASCII meaning is the same as it is in ATASCII. That is, characters whose
values range from 0- 31 decimal (ASCII control values) or whose values are above
124 decimal (7C hex) will not be sent. Note that characters whose high bit is one
will be translated to nothing; that is, characters that would show on the television
sc reen as inverse video will not be sent in Heavy translation mode. Note also the
difference between input and output in the Heavy translation mode: untranslatable
characters in the input are converted to the Won't-Translate value, where un­
translatable output simply is not sent out.

The (optional) sending of LF after CR is produced in the translation step. If you
spec ify no translation, the option of addi ng LF to CR is not available. If you specify
Light tran slat ion , LF will follow EOL (which of course becomes CR). Note that if you
send the 13-decimal code (CR), LF will be added to it (when the Append LF feature
is on). Each character in the CR/LF pair is independently sent through the parity and
word shortening steps on its way out. The preset default setting of the Append LF
feature is Off, th at is, the default is to not append the LF. LF will be appended only if
translation is enabled. If NO TRANSLATION is set, LF will not be automati ca lly ap­
pended to anything.

You may select input and output parity handling separately. Thus, you may choose
to send , for example, even parity while you ignore the parity of what you are
receiving. The parity is always the most significant bit of each 8-bit byte (bit number
7). Parity operation is not useful then, if you are working with 7-, 6-, or 5-bit words.

In the default parity condition, the parity bit of input or output is not altered.
However, the parity bit of outgoing messages may have been changed during the
translation step.

For output, you may select even parity, odd parity, set parity bit to 1, or no parity
change.

For input, your choices are " don 't touch," "check even," "check odd," and
"don't check." Each of these last three options will clear the top bit to zero,
whether or not a parity check is made. If an input parity error is found, the
character will still be input as if it were all right; the parity error flag will be turned
on in the status bytes. See Sections 10 and 13 for details.

The third operation which affects your code translation is the short word conver­
sion (if you are using 8-bit words, this is a " no-effect" operation). Short words sent
out are made from 8-bit computer characters by omitting the most significant bits.
That is, a 7-bit word is bits 0- 6 of the character, a 6-bit word is bits 0- 5, and a 5-bit
word is bits 0- 4. Thus the parity, if generated, is lost. ASCII is a 7-bit code; you can
send ASCII in 7-bit form without parity (this is not common practice, though -
usually 8 bits are sent even if the 8th bit is not used for parity). With 6-bit and 5-bit
codes, you will not be using ASCII , so you will have to concern yourself with the
codes you want to be sending. With these word sizes, you should turn translation
off so the translation performed by the interface module handler will not affect the
codes you are using.

Setting the Translation Modes and Parity Handling 27

On input, small words are converted to 8-bit computer characters by adding high­
order bits. These added bits are always set to 1. Thus, if you are receiving 7-bit
ASCII , the parity and translation steps will be getting ASCII with the 8th bit set high.
If you are receiving 6- or 5-bit codes, there is no way you can receive the 13
decimal (OD hex) code (ASCII CR) -after all , you cannot receive ASCII in 6 or 5
bits anyway. This means that in BASIC you will have to use the GET statement, not
INPUT. Of course, you will be doing your own code conversion , so you should
turn off the conversions of the interface module handler.

The CONFIGURE TRANSLATION MODE command is specified in BASIC this way:

XIO 38, #IOCB, Auxl, Aux2, "Rn:"

38 specifies the CONFIGURE TRANSLATION MODE command .

The #IOCB specifies the IOCB number (from 1 to 7) you wish to use to configure
the translation mode. You may open a new IOCB if you have no channel open to
the port you are configuring; otherwise you must use the IOCB you have opened to
that port. You cannot issue the CONFIGURE TRANSLATION MODE command if
any Concurrent Mode 1/0 is active.

Aux1 specifies the translation mode, the input parity mode, the output parity
mode, and the Append LF option. You specify these options by adding numbers
taken from Tables B-5, B-6, B-7 and B-8 in Appendix B. You may add the numbers
yourself and put the sum in your program for Aux1 , or you may let BASIC add them
for you (e.g. , you can say either 2 + 8 + 32 or 42 to mean even parity in , even parity
out, and no translation) . Do not add in more than one value from each table.

Aux2 is the numeric representation of the Won ' t-Translate character for Heavy
translation. Remember that the BASIC function ASC will give you the numeric
representation of a character. For example, 65 and ASC(" A") mean the same
number. The number you specify should be from 0 through 255 .

"Rn:" specifies the port you are configuring. For n, you put 1, 2, 3, or 4. R: means
you are configuring port 1.

The default configuration is Aux1 = 0 and Aux2 = 0. If you execute the CON­
FIGURE TRANSLATION MODE command for one of the RS-232-C SERIAL INTER­
FACE ports, that configuration will remain in effect until you do another CON­
FIGURE TRANSLATION MODE for that port. JiiiiM+;iMill will not change the
translation mode for any port. Of course, you can configure each port a different
way.

28 Se tting the Translation Modes and Parit y Handling

DTR, RTS,
AND XMT

CONTROL
COMMAND

7

CONTROLLING THE
OUTGOING LINES

There are up to three outgoing RS-232-C signals on each of the RS-232-C SERIAL IN­
TERFACE ports of the ATARI 850 Interface Module: Data Terminal Ready (DTR) ,
Request to Send (RTS), and Data Transmit (XMT). Each of these lines can be turned
on or off with the CONTROL command.

Port 1 supports all three outputs. Ports 2 and 3 have DTR and XMT. Port 4 has only
XMT. You may use this command the same way with any port- it is not an error to
try to control a line that does not exist. Your attempt will simply have no effect.

You may control any or all of these lines on a single RS-232-C SERIAL INTERFACE
port with the CONTROL command (controlling lines on other ports requires one
CONTROL command for each port). The CONTROL command ·may be issued to a
port which is not OPEN through an IOCB by specifying any unopen IOCB number
in the CONTROL command. If the port has been opened through an IOCB, you
must use that IOCB in the CONTROL command. You may not issue a CONTROL
command if any Concurrent Mode 1/0 is active.

Controlling XMT line has very limited use and few users will be concerned with it. If
you change XMT you are likely to interfere with the normal transmission of data . In
the serial communication world the only practical use of control of the XMT line is
to send a BREAK signal. The BREAK is simply a period of holding the XMT line out
of its normal resting state. Specifically, the normal resting state is called MARK,
which corresponds to the binary 1 state. A BREAK is a period of the state called
SPACE, which corresponds to binary 0. (Actually, since MARK and SPACE are the
only legal states of any RS-232-C SERIAL INTERFACE signal, all data consists of alter­
nating MARKS and SPACES.) What distinguishes BREAK from other uses of SPACE is
that a BREAK is a SPACE which is a lot longer in duration than the time that a
transmitted word would be. This is true because any transmitted word ALWAYS
has one or more MARK bits in it- in particular, each word ends with one or more
stop bits represented by MARK. Thus to send a BREAK, first issue a CONTROL com­
mand to set the XMT line to SPACE (0) , then a little while later issue a control to set
it back to MARK (1).

The uses of the other lines will depend on your application. For some guidelines,
see Section 10.

The preset default state of the DTR and RTS lines is OFF. The preset default state of
the XMT line is MARK. Once you change any of them with the CONTROL command,
the new setting will remain until you either turn the computer off or issue another
CONTROL command to change things. The .. t;i!iJMI;!ij@l key has no effect on these
lines.

Con trolling the Outgoing Lines 29

The form of the CONTROL command in BASIC is:

XIO 34, #IOCB, Auxl, Aux2, "Rn:"

34 specifies the CONTROL command.

The #IOCB specifies the IOCB number (1-7) you wish to use for the command. If no
IOCB is open to the RS-232-C SERIAL INTERFACE port, specify an unused IOCB. If
not doing concurrent 1/0 and the port is open through an IOCB, use that IOCB.

Aux1 is the sum of three numbers chosen from Tables B-9, B-1 0, and B-11 in Appen­
dix B to control DTR, RTS, and XMT. Choose only one number from each table. You
may add the numbers together yourself and put the resulting sum in your program
for Aux1 , or you may put an expression for the sum and let BASIC do the arithmetic
for you.

Aux2 is not used by this command ; the best value to specify is zero.

" Rn:" specifies the RS-232-C SERIAL INTERFACE port you are acting on. For n you
put 1, 2, 3, or 4. If you omit n, the interface modu le handler wi ll assume you;nean
port 1.

30 Cont rolling the Outgoing Lines

OPENING
A PORT

CLOSING
A PORT

8

BASIC 1/0 COMMANDS

The commands OPEN and CLOSE, and the 1/0 commands GET, INPUT, PUT and
PRINT, LIST, SAVE described here should be familiar from using the BASIC
language.

You must open an IOCB (using the BASIC OPEN command) to a RS-232-C SERIAL
INTERFACE port before you can read from it, write to it, start Concurrent Mode 1/0
or read its status. You may configure a port without having opened it.

The OPEN command in BASIC is :

OPEN #IOCB, Auxl , Aux2, " Rn :"

IOCB is the number of the IOCB that other BASIC commands for the opened port
must use. Any IOCB number (1 through 7) may be used . Do not use an IOCB if
another file is already open through it.

Aux1 specifies the direction of the port:

• 5 signifies that you are going to use the port for input only (Concurrent Mode
1/0)

• 8 signifies that you are going to use the port for output only (Block Mode 1/0)
• 9 signifies that you are going to use the port for output only (Concurrent

Mode 1/0)
• 13 signifies that you are going to use the port for input or output (Concurrent

Mode 1/0, full duplex)

Aux2 is not used in this command; make Aux2 ze ro .

Rn: is the RS-232-C SERIAL INTERFACE port being opened. n can be 1, 2, 3, or 4.
R: is interp reted as Rl: . For a given port no more than one IOCB may be open at
one time.

Having opened and used a port, you may disconnect the IOCB by closing th e port
with the BASIC command CLOSE, as follows:

CLOS E # IOCB

IOCB is the IOCB number previously opened.

Basic 110 Commands 31

AT ARI BASIC 1/0
STATEMENTS

32 Basic 110 Commands

CLOSE is also used to terminate Concurrent Mode 1/0. In this case the IOCB
number is the one through which the Concurrent Mode 1/0 is active. CLOSE is the
only way to terminate Concurrent Mode 1/0 from a program.

Note: Always close Concurrent Mode 1/0 before closing anything else.

To restart Concurrent Mode 1/0 to the port, you must first reopen an IOCB to it
with the OPEN command.

When you CLOSE the IOCB, all data in the input buffer is lost, and all data in the
output buffer is sent.

Closing a file does not change the configuration of the IOCB. You may change any
configuration parameters after closing the port .

Note: Failure to terminate Concurrent Mode 1/0 properly before attempting 1/0 to
other peripherals (or even other SERIAL INTERFACE ports) will probably result in
program failure.

Pressing l.iiiW+;iijjl on the computer closes all open IOCBs and reestabJishes
most of the 1/0 system's registers and pointers . This method of closing files results
in the loss of data being held in input and output buffers . The interface module may
be " interrupted" by the I.UiliMM;I¥!+1 and so transmit only part of the character be­
ing sent at the time l.fW#&i;iiJ.ijl was pressed. Another possible effect of
l.#idhl;lijjl is a short burst of random data to an active Concurrent Mode 1/0 RS-
232-C SERIAL INTERFACE port.

The exclusion of peripheral I/O to anything other than the active Concurrent Mode
1/0 port applies to the CLOSE command. If you have any other peripheral device
or RS-232-C SERIAL INTERFACE port open, you cannot close it while one open port
is in the Concurrent Mode 1/0. Close the Concurrent Mode 1/0 port first.

If files are not specifically closed, BASIC will close them when it interprets END or
comes to the end of the program. All files are closed in the descending order of the
IOCB number you have assigned.

ATARI BASIC has reserved IOCB #7 for LPRINT and IOCB #6 for the Graphics
Modes. These two IOCBs are user programmable. However, problems will occur if
you have opened IOCB #6 and then use the LPRINT command, or have IOCB #7
open and change Graphics Modes. For this reason, it is suggested that IOCB #5 be
used when configuring a se rial port and IOCB's numbered less than #5 be used for
your other files. Then , when your program ends, the serial port will automatica lly
be closed before any other program files.

Note: Always make sure that an active Concurrent Mode 1/0 IOCB is closed
before any other closes occur.

This section contains information on how these statements are used with the
SERIAL INTERFACE ports. Before reading this section you should read and under­
stand the material in Sections 4, 5, and 6, Appendix B, and the preceding material
on opening and closing ports.

GET, INPUT, PUT, AND PRINT

The BASIC input statements are GET and INPUT. The BASIC output statements are
PUT and PRINT. Refer to the AT ARI BASIC Reference Manual for detai Is about these
statements. In this context, PRINT and INPUT must always include the proper
IOCB number. The formats are given here as a reminder .

Formats: GET #IOCB,var
IN PUT #IOCB{;} { avar[, { avar} ...]

{,}{svar}[,{svar} ...]
PUT #IOCB,aexp
PRINT #IOCB{;} exp[,exp ...]

{,} [;exp ...]}

avar- Arithmetic variable
exp -Any expression, whether a string expression or an arithmetic expression
svar - A string variable
var - Any string variable, string or arithmetic

(See the ATARI BASIC Reference Manual for details.)

INPUT and PRINT are line oriented. They process a "l ine" of characters at a time.
A line ends with an AT ASCII EOL character. The translation mode you~ set up (or the
one preset for you) can be used to translate the EOL cha racter to an ASCII CR on
output, and CR to EOL on input. An EOL is required for INPUT- a BASIC INPUT
statement will not finish until an EOL is read in. If your input does not have EOL, or
if your translate mode will not produce it on input, you should not use INPUT, but
use GET instead.

Remember that if you place a comma or semicolon at the end of a PRINT com­
mand, EOL is not produced when the PRINT command is executed.

When you use a BASIC input statement, the input data must be in the proper form
for BASIC. For example, if you read into numeric variables, the input must consist
of digits with optiona l sign, decimal point, and exponent. Multiple input numbers
must be separated by commas or EOLs. For more details see the ATARI BASIC
Reference Manual.

GET and PUT are character-oriented. You can input or output only one character
at a time. This is much slower than INPUT and PRINT, but it gives you more control
over what you send and receive. You may alternate between the different types of
BASIC input statements, and between the output statements, to the same port if
necessary.

Concurrent Mode input, or Concurrent Mode (full-duplex) 1/0, is performed by
first opening the file for concurrent 1/0, executing a START CONCURRENT MODE
1/0 operation, and then doing normal BASIC INPUT, GET, PRINT and PUT opera­
tions to that port. In CONCURRENT MODE 1/0, after you have performed the
START CONCURRENT MODE 1/0 command, 1/0 is going on at the same time
BASIC is executing other commands for you. For example, if your RS-232-C com­
patible device is sending characters to the computer through the interface module,
after the START CONCURRENT MODE 1/0, those characters will be saved for your
program as they arrive into a holding buffer by the computer. If you subsequently
perform an INPUT statement to that port, the computer will just look in that buffer
for the input data.

Basic 110 Commands 33

34 Basic 1/ 0 Commands

Output may be done either in Block Mode or in Concurrent Mode. When you do
output in Block Mode, do not start Concurrent Mode 1/0 before doing the output.
For this reason, full-duplex operation is not allowed with Block Mode output.

Block Mode output sends your data out to th~ interface module in 32-character
blocks (whenever 32 characters have been collected by the handler from your PUT
or PRINT statements). The computer waits while the interface module sends the
block over the RS-232-C SERIAL INTERFACE port. Between blocks the computer's
1/0 port is not being used as it is when Concurrent Mode 1/0 is active, so if you use
Block Mode there are no restrictions on using other 1/0 devices at the "same
time."

Block Mode 1/0 is the only mode in which you can transmit 5-, 6- or 7-bit words
(the word size option of the SET BAUD RATE command will not work with Concur­
rent Mode 1/0 output). 8-bit words may be transmitted in either Block or Concur­
rent Mode 1/0.

Note: On rare occasions, the Operating System may resend a block to the inter­
face module. This may result in part or all of the block being sent twice to the
RS-232-C peripheral. To avoid this problem, use Concurrent Mode 1/0 oupur.

Concurrent Mode 1/0 output does not work in blocks. Instead, whenever your pro­
gram tries to output any characters to the interface module, they are first moved in­
to a 32-byte buffer. As long as there are characters in the buffer which have not
been sent they will be sent as fast as possible . This " draining" of the buffer takes
place concurrently with the execution of other BASIC statements in your program .
The buffer will fill up when you try to output characters faster than they can be
transmitted at the Baud rate you are using. Your program will be held up until
space becomes available in the buffer. If you do not want your program to be held
up, use the STATUS command to find out how much buffer space has been used
and let your program use that information to decide whether or not to execute an
output statement.

Concurrent Mode 1/0 input may be used at the same time you are using Concur­
rent Mode 1/0 output (full-duplex operation) . Note that Block Mode output is not
allowed if you do this . Also note that 5-, 6-, or 7- bit words can only be input in half­
duplex mode. If you select anything other than 8-bit words you cannot output and
input them at the same time. The 5-, 6-, and 7-bit words can be input at speeds up
to 300 Baud .

Concurrent Mode 1/0 input data is placed in the input buffer as it is received from
the RS-232-C SERIAL INTERFACE port. Your program must get the data out of the
buffer with GET or INPUT before the buffer fills or data will be lost from the buffer.
If the buffer fills, the data that has been in the buffer the longest will be replaced by
the newer data. What your program will see is that characters are missing. The
STATUS REQUEST command will tell you if data has been lost this way. STATUS
REQUEST can be used to find out how many characters are in the input buffer, so
you can program the machine to decide when to do an INPUT. STATUS can also
be used to determine some kinds of errors in data reception and parity. This is fully
described in Section 10, The STATUS Command.

LIST, SAVE, lOAD, AND ENTER

The BASIC statements LIST, SAVE, LOAD and ENTER perform "compound 1/0"
operations . Their operations can be thought of as consisting of combinations of
other 1/0 operations. Each statement wi ll input or output all or part of your pro­
gram. This section defines how these statements work with the RS-232-C SERIAL
INTERFACE ports .

Each of these statements can be thought of as consisting of first an OPEN, then one
or more input or output operations, then a CLOSE. These operations do not in­
clude any configuration of RS-232-C SERIAL INTERFACE ports, and they do not in­
clude any START CONCURRENT MODE 1/0 action. Thus you cannot use the two
input statements (LOAD and ENTER) with the RS-232-C SERIAL INTERFACE ports.
Instead, enter your program as data to a program you write in ATARI BASIC and
put the program on cassette or diskette. Then you ca n ENTER th e program to
ATARI BASIC from the cassette or diskette. The RECEIVE program on page 52 is an
example of the type of program needed.

Since the configuration commands may be executed without opening an IOCB to a
RS-232-C SERIAL INTERFACE port, you can configure the Baud rate, translation
modes, and so forth, before you execute a LIST or SAVE to the port. (Saving a pro­
gram to the RS-232-C SERIAL INTERFACE port will send the program in BASIC'S in­
ternal 8-bit tokenized format- this will probably be useful only if you are sending
the program to another ATARI Home Computer System.) Since LIST has no implicit
interface module status checking, the program will simply be sent out at the max­
imum rate allowed by the Baud rate you have selected. The receiving device must
therefore be able to receive the data at that rate.

Basic 110 Commands 35

9

STARTING CONCURRENT
MODE 1/0

Use the command START CONCURRENT 1/0 (XIO 40) to start Concurrent 1/0
Mode. This mode may be used for output and must be used for input or full duplex.
The port must be open before you can start Concurrent Mode 1/0. Once Concur­
rent Mode 1/0 is in effect, no other 1/0 operations that use the computer 1/0 con­
nector can be performed. Input/output operation to another serial port, for
example, cannot be performed; 1/0 to the keyboard editor, the screen editor, and
the controller jacks can still be performed.

Operations that are allowed while Concurrent Mode 1/0 is active are input and out­
put operations to the active port (GET, INPUT, PUT, PRINT) , STATUS commands to
that port, and CLOSE commands to that port.

There are two different forms of the START CONCURRENT MODE 1/0 command.
The main difference between them is that one specifies the use of a small input buf­
fer bu il t into the interface module handler (in the computer) , and the other allows
you to give your own buffer to the hand ler so it can be any size you wish. In
Assembly Language these two options are really just different forms of the same
command.

The form of the START CONCURRENT MODE 1/0 command which allows you to
specify your own 1/0 buffer has two disadvantages. The command is complicated
to specify in this form , and the BASIC array you use as the buffer may be moved by
the BASIC interpreter. Once created, BASIC arrays are not moved while a program
is being run, but arrays are moved whenever you add or delete a BASIC statement,
even in the immediate mode.

The handler for the interface module is told of the location of the buffer only when
you start Concurrent Mode 1/0. If BASIC is allowed to move the array, data will be
inserted in unpredictable locations. Ongoing concurrent input could wind up in
other arrays or variables or even in your BASIC program, possibly destroying it.
Therefore, if using user-program supplied buffers, it is imperative to close the Con­
current 1/0 when the program stops. See " Closing a Port," Page 31.

None of these problems occur if you use the buffer which is built into the interface
module handler, since that buffer does not move. On the other hand, that buffer is
quite small (32 bytes) and this may not be adequate for all programs.

With any size input buffer you need to GET or INPUT the data from the buffer
before the buffer fills up with data that you have not yet read. Of course, if in the
long-range average you read the data out of the buffer more slowly than it is
arriving, you will eventually lose data anyway. If this is the case, you will either
have to put up with losing it (which is not all that bad in some cases- see program
example READING A DIGITIZER, Section 11), or you will have to figure out a way
to slow down the device that is sending the data to you (such as setting a lower
Baud rate) . Even if your program processes the data fast enough in the long run , a
small buffer puts demands on your program to get data quickly and often .

Starting Concurrent Mode 110 37

The BASIC interpreter can be quite slow relative to incoming data, if you want to
do some processing on each and every character that comes in. In that case, even
300 Baud would be fast for BASIC. On the other hand, the system is more than fast
enough to read in a line of data (terminated by CR) at 9600 Baud (960 cps) - as
long as there is enough time between lines for your program to do its processing. It
pays to read a whole line of input at a time (use INPUT wherever possible instead of
GET), and it's really helpful if the inputting device will pause for you after each line.
Even if the inputting device will not pause, inputting a whole line at a time may buy
you the processing time you need. The best thing to do is try it.

Note: In order to perform line-oriented input using the BASIC INPUT statement,
the input must either have an ATASCII EOL at the end of each input line, or an
ASCII CR must terminate each line. In the latter case, you must configure the
translation mode of the interface module port to convert the CR into EOL. This is
discussed more fully in Section 6.

A large input buffer will be needed if you can read the data from the buffer only in
large, occasional bursts. For example, if you do not know how long it will take to
process a line of input because some lines require a lot of work, you will want to
allow lines to "back up" in the input buffer. This will work fine as long as you do
not get too many of these "slow" lines at once. You will probably have to deter­
mine the needed size of your input buffer by trial.

The number of characters that can come in every second depends on the Baud rate
- the higher the Baud rate the faster characters can arrive. Thirty characters may
arrive each second at 300 Baud; 480 may arrive in the same time at 4800 Baud. Of
course, if the sending device does not run at the maximum possible speed - if
there are "gaps" between characters anywhere- then the speed of the characters
will not be important. Thus the Baud rate controls the maximum data transfer rate,
but the actual or effective data transfer rate may be smaller.

What it amounts to is that your program in BASIC must INPUT data from the input
buffer faster than the interface module puts them there from your RS-232-C com­
patible device; that is, your BASIC program must read the data faster than your
device's effective data transmission rate (on average). You can control that rate by
setting the Baud rate, and possibly there are other ways to control the transfer rate
(that depends on the device itself). Be prepared to experiment to find the best
mode of operation.

In BASIC, the START CONCURRENT MODE 1/0 operation which uses the built-in
input buffer looks like this:

XIO 40, #IOCB, 0, 0, "Rn:"

Specify the appropriate open IOCB, and specify 1, 2, 3, or 4 for n in Rn:. The com­
puter assumes port 1 for R:. You must specify zero for both Au'x1 and Aux2, since
this is the way the RS-232-C handler is told to use its own input buffer.

If you opened the port for output only, then only concurrent output is enabled. If
the port is open for input only, then only concurrent input is started. If the port was
opened for both, then Concurrent Mode input and output are started (full duplex).
See Section 4 for details on how these various modes operate.

38 Starting Co ncurrent Mode 110

In BASIC, the START CONCURRENT MODE 1/0 operation in which you supply the
input buffer for the handler is specified by a series of POKE statements followed by
calling the Central 1/0 (CIO) through a USR function. The POKE statements specify
the type of operation and specify the buffer address and length. Poke these values
into the IOCB corresponding to the IOCB you have opened for the RS-232-C
SERIAL INTERFACE port. Here is an example program:

10 DIM BUF$(500) , RSTART$(7)

20 LET RSTART$ = "hhhiJ LVII":REM * and dare inverse video

30 LET FILE = 2

40 OPEN #FILE, 13, 0, " R4:"

50 LET IOCB = 16*FILE

60 LET BUF = ADR(BUF$)

65 LET BUFLEN = 499

70 LET RST ART = ADR(RST ART$)

80 POKE 832+ IOCB+2, 40

90 POKE 832+ IOCB+ 4, BUF-(INT(BUF/256) * 256)

100 POKE 832+ IOCB + 5, INT(BUF/256)

110 POKE 832 + IOCB + 8, BU FLEN-(1 NT(BU FLEN/256) * 256)

120 POKE 832+ IOCB+ 9, INT(BUFLEN/256)

125 POKE 832 + IOCB + 10, 13

130 DUMMY = USR(RSTART,IOCB)

140 ST ARTST ATUS = PEEK(832 + IOCB + 3)

In this program, a full-duplex file is opened through IOCB #2 to RS-232-C SERIAL
INTERFACE port number 4 (the 13 in line 40 specifies full duplex). Lines 50 through
70 set up some values that are used by the START CONCURRENT MODE 1/0
operation. The buffer is set up in lines 80 through 130. Line 140 gets the status value
returned by the 1/0 call. Each POKE statement puts some needed value into the
IOCB. The address to poke is specified as the sum of the following: the first address
of the IOCBs (832), a value specifying which IOCB, and an "Offset" into the IOCB
for the particular value you are poking. The value specifying the IOCB is 16 times
the IOCB number through which you have opened the RS-232-C SERIAL INTER­
FACE port (in this case we set the variable IOCB to 32 in line 50, si nce the IOCB is
#2).

The values poked into the IOCB are: 40 into Offset 2; the buffer location (address)
into locations 4 and 5; the buffer length (minus one) into Offsets 8 and 9; and 13 in­
to Offset 10. Pay spec ial attention to the fact that the buffer address and the buffer
length are both 2-byte values, requiring two pokes to put them into the IOCB.
Those comp lex looking expressions in lines 90 through 120 are simp ly splitting the
address and length into their low-part and high-part so each part can be poked
individually.

Line 130 ca lls the 1/0 system through a USR function. This USR function has two
arguments : the address of the function, and the IOCB specifier (the same as was
used in specifying the poke locations). The address of this USR function was found
in line 70, so you see that the function is the character array called RSTART$. The
function itself is the odd-looking sequence of characters in line 20. Be sure to type
this character sequence carefully before you ca ll this USR function- any mistakes
and your program will probably produce an unrecoverable failure.

Starting Concurrent Mode 110 39

Assembler note: This USR function is the following in Assembly Language: PLA;
PLA; PLA; TAX; JMP $E456. The first four instructions get the IOCB number into the
X-register, but leave the return address on the stack, so the 1/0 system is "called"
by jumping to it at address E456.

Line 140 gets the 1/0 status after the USR 1/0 call. You do not need to get the status
if you do not want to . To get status, PEEK at Offset 3 in the IOCB. The status will be
1 if all went well. Otherwise, the status is the same as the error number that BASIC
prints after an 1/0 call fails. (Note that the variable DUMMY in the program above
does not get any meaningful value.)

By using USR to call the 1/0 system you are bypassing any checking by BASIC of the
success of the 1/0 . The only result of any error will be that Offset 3 in the IOCB will
not have the value 1. Therefore, no BASIC error will occur and no TRAP you set will
occur.

Once this START CONCURRENT MODE 1/0 operation has been performed, the
concurrent 1/0 is active. The operation may be either in-only or out-only, or it may
be full-duplex (as specified in the OPEN). If you are running full duplex or out-only,
the output buffer is built into the interface module handler. The input and output
buffers are accessed through normal input and output statements in BASIC. See
Section 8 for detai Is.

Remember, BASIC may move arrays around if your program stops. If Concurrent
Mode input continues after your program stops, this may result in overwriting
something outside your buffer array.

There is a 256-byte area at address 1536 (decimal) which you may use as an input
buffer or anything else. Be sure that area is only being used for the one thing you
wish . Most ATARI software does not use this area. However, if you plan to use thi s
area as a buffer, read the instructions that come with your ATARI software. Address
1536 splits nicely into low and high parts (so does 256), so you could replace lines
90 through 120 of the program as shown on page 39:

40 Starting Concurrent Mode 110

90 POKE 832 + IOCB + 4, 0

100 POKE 832+10CB+5, 6

110 POKE 832+ IOCB+ 8, 0

120 POKE 832+10CB+9, 1

If you use this area, you do not need to worry about it when your program stops
since BASIC will not move it.

BASIC commands that will automatically close all of the IOCBs are: RUN, END,
BYE, DOS, NEW, and ENTER. Allowing your program to "run off the end" also
closes the IOCBs automatically.

If BASIC is allowed to close your IOCBs, it will close all open IOCBs according to
IOCB number in descending order. However, since a CLOSE operation to a file
usually involves serial port 1/0, it is not allowed during Concurrent 1/0 (unless it is
to the Concurrent 1/0 port itself). Therefore, since IOCB #7 is reserved for LPRINT
and IOCB #6 is reserved for graphics, we strongly suggest that you use IOCB #5 for
your Concurrent 1/0 and IOCBs numbered less than 5 for your program files. In
that way Concurrent 1/0 will be closed before your files.

There are cases where your program may stop but the IOCBs will remain open.
These are 1/0 error, program error, pressing the 1!Ji1m key when enabled, and the
BASIC command STOP. The BASIC command CONT will not close any open
IOCBs.

If you have followed the above suggestion using IOCB #5 and wish to stop Concur­
rent Mode 1/0 and close your files, you can enter the BASIC command END from
the immediate mode. If you have not followed the suggestion, you must close each
file individually with the BASIC command CLOSE (CLOSE #4, CLOSE #3 , etc.). In
any case, the Concurrent 1/0 must be closed first.

Starting Concurrent Mode 110 41

USES OF
STATUS
COMMAND

10

THE STATUS COMMAND

The STATUS command is useful for determining many facts about an RS-232-C
SERIAL INTERFACE port and the state of the interface module. You can chec.k for
certain specific error conditions to find out why certain errors have occurred, to
check parity, and so on. The STATUS command allows you to determine the
amount of data in the input and output buffers while Concurrent Mode 1/0 is in ef­
fect. STATUS also allows you to check the state of the RS-232-C control lines DSR,
CTS, CRX (and the state of RCV at the time you issue the STATUS command).

The STATUS command may be issued only through an IOCB opened to a RS-232-C
SERIAL INTERFACE port. You may issue the command whether or not Concurrent
Mode 1/0 is in effect. If this mode is in effect to a port, you cannot obtain status in­
formation (via the STATUS command) from any other port.

The information returned by a STATUS command is different according to whether
or not Concurrent Mode 1/0 is in effect. When Concurrent Mode 1/0 is in effect,
the STATUS command al lows you to see how full your input and output buffers
are, but you cannot check on the state of the control lines DTR, CTS, CRX and RCV.
When Concurrent Mode 1/0 is not in effect, you get no information about buffers,
but the state of the control lines can be checked. There are other minor differences
in the effect of the STATUS command in the two cases.

In BASIC, the STATUS REQUEST command is implemented as a "compound"
command - that is, you must code multiple BASIC statements to get the status.
The first is the STATUS command. This is followed by uses of the PEEK function to
retrieve status which is placed in a small status area by the STATUS command.

The STATUS command looks like this in BASIC:

STATUS #IOCB, avar

Here, #IOCB specifies the IOCB (1-7) through which you have opened the RS-232-
C SERIAL INTERFACE port. You may issue this statement to the port before or after
Concurrent Mode 1/0 is started.

Avar is a variable which will get the status of the STATUS sta tement itself. That is,
avar will be set to the input/output system's one-byte status that is returned when
BASIC calls the 1/0 system. Since the 1/0 system call here is STATUS, the value
returned is the 1/0 system's determination about how the STATUS command went.
This number is the same kind of number returned to BASIC by the 1/0 system after
any 1/0 call, but in the other BASIC 1/0 statements, BASIC looks at the number
itself to see if the 1/0 was completed without error. The STATUS command simply
puts the number in the avar. This status number can be interpreted just like one of
the ERROR codes -for example, you will get an ERROR 130 if you neglected to
OPEN the IOCB, since an unopen IOCB does not specify any peripheral device and
ERROR 130 means " Nonexistent Device Specified." The status number will be 1 if
the STATUS call was completed without error. The status number will be some er­
ror number greater than 127 if there was some problem with the STATUS call.

The Status Command 43

44 The Status Command

If the STATUS cal l is successfu l, up to four bytes of information are stored in loca­
tions 746, 747, 748, and 749 (decimal). Location 746 always contains error status
bits relating to the status his tory of the RS-232-C SERIAL INTERFACE port. The other
three locations will contain buffer use information if Concurrent Mode 1/0 is active.
If Concurrent Mode 1/0 is not active, 747 contains status bits relating to DSR, CTS,
CRX, and RCV on the RS-232-C SERIAL INTERFACE port, and locations 748 and 749
hold nothing.

Table 10-1 shows the definition of the error bits in location 747. The table gives
each bit a decimal value which shows how that bit, if " on" or 1 (as opposed to
" off" or 0), adds to the total value of the byte when interpreted as a decimal
number. The meaning of each of these error bits is discussed later in this section,
but first here is a BASIC example showing how you can check one of the bits:

160 STATUS - 1, IGNORED

170 LET ERRORBITS = PEEK(746) / 128

180 IF INT(ERRORBITS) < > INT(ERRORBITS + 0.5) THEN PRINT

" OVERRUN!"

In statement 160 the STATUS call is made to a dummy variable IGNORED. We do
not use this variable, because we assume the STATUS call will work all right . The
STATUS call must be made in order to put a value into location 746.

Statement 170 peeks at location 746. This value is then divided by twice the
decimal number of the error bit being checked (this information is taken from
Table 1 0-1). This value becomes the variable ERRORBITS. If the bit being check is
0, then adding 0.5 will not increase the integer part of the number. If the bit is 1, the
integer part of the value changes when 0.5 is added.

In the above example, we are checking for the BYTE OVERRUN error. From the
table, we find this to be 64. PEEK(746) is divided by twice 64 (128).

Statement 180 makes the comparison. If there is an error, OVERRUN! will be
printed .

Table 10-1 Decimal Representation of the Error Bits in Location 746

Decimal Equivalent Error

128
64
32
16
8
4
2
1

Error

Received data framing error
Received data byte overrun error
Received data parity error
Received data buffer overflow error
Illegal option combination attempted
External device not fully ready flag
Error on block data transfer out
Error on command to interface module

•

ERROR
STATUS BITS

Following are the descriptions of these error status bits in location 746 after
STATUS command.

RECEIVED DATA FRAMING ERROR (bit 7, decimal value 128)

This error bit indicates that a framing error was encountered in the data coming
from the external RS-232-C compatible device: the 1Oth bit of some character was
not a STOP bit (9th, 8th or 7th in the cases of 7-, 6-, or 5-bit received words). This
error can be caused either by garbled data (for instance, noise on the phone lines)
or by improper configuration to receive the data (for example, wrong Baud rate).

This condition is monitored in one of two places: in the ATARI Home Computer, or
in the ATARI 850 Interface Module. The computer watches for this error in the case
of 8-bit data. The interface module catches this error if you are receiving 7-, 6-, or
5-bit data. In both cases, the error status is set at the time the erroneous character is
received (not the time you read it out of the holding buffer) .

In the 8-bit data case, where the computer monitors the error, you may find out
about the error any time after it occurs by issuing STATUS while the Concurrent
Mode input is active. The error bit will be cleared when you issue the STATUS com­
mand or when you CLOSE the Concurrent Mode IOCB. In the 7-, 6-, and 5-bit
cases, the error is monitored by the interface module and cannot be interrogated
while the Concurrent Mode input operation is active. In this case, you must close
and reopen the Concurrent Mode IOCB and then issue STATUS to determine if the
error occurred. The error bit in the interface module is cleared by STATUS when
Concurrent Mode 1/0 is not active. It is also cleared by most of the configuring and
control XIO's (but not all), and it may be cleared by CLOSE when Concurrent Mode
1/0 is not active .

In general, the error bits read from location 746 after a STATUS request apply only
to the most recent 1/0 operation to the RS-232-C SERIAL INTERFACE port; that is,
they are cleared as the 1/0 operation is started and then set if the error occurs. You
can see that the previous error is an exception to this rule.

RECEIVED DATA BYTE OVERRUN ERROR (bit 6, decimal value 64)

This error bit is maintained by the computer and indicates that the computer got
too busy to read all the data as it was arriving (due to overly heavy interrupt
loading, or perhaps interrupts being masked off totally). This error is flagged when
the first character of data following the error is read from the port and placed in the
holding buffer. The error should not occur at all under normal conditions.

RECEIVED DATA PARITY ERROR (bit 5, decimal value 32)

This error bit is maintained by the computer and indicates that a received character
had the wrong parity. The bit will not be set if no parity checking has been enabled .
This error occurs during the translation from the external (received) form of the
character to the internal (INPUT, GET) form , which takes place as the data is read
out of the holding buffer. The error flag bit is cleared by the STATUS command.

The Stat us Command 45

46 The Status Command

RECEIVED DATA BUFFER OVERFLOW ERROR (bit 4, decimal value 16)

This error flag indicates that more data has arrived than can be held in the input
buffer- data has not been read from the buffer (INPUT, GET) soon enough. This
error is maintained by the computer, and it occurs when the overflowing character
arrives from the RS-232-C compatible device. The new character replaces the
oldest one in the buffer . Thi s error bit is cleared by the STATUS command.

ILLEGAL OPTION COMBINATION ATTEMPTED (bit 3, decimal value 8)

This error flag is kept in the interface module and may be read by STATUS only if
Concurrent Mode 1/0 is not active. It is set by an attempt to start Concurrent Mode
input with short words (7-, 6-, or 5-bit) with the port open for both input and output
or output only (short words are allowed in only) or too high a Baud rate (short
words are allowed for input at a maximum rate of 300 Baud). This error may be
checked immediately after the interface module produces a NAK (Error 139, which
may be trapped) for the refused command . The bit is cleared by the STATUS re­
quest. Error bit zero (command error, decimal value 1) will always be set when this
bit is set.

EXTERNAL DEVICE NOT FULLY READY (bit 2, decimal value 4)

This bit is kept in the interface module and may be read by STATUS only when
Concurrent Mode 1/0 is not active. It is set whenever a START CONCURRENT
MODE 1/0 or block output command is refused by the interface module because
one or more of the external status lines being monitored is not ON. Any of the
external status lines not being monitored (as set by the SET BAUD RATE command)
is ignored; if none is being monitored this bit will not be set and the 1/0 operation
will proceed normally . Read this flag bit with a STATUS request immediately after
the interface module refuses the operation with Error 139, which can be trapped .
This flag is cleared by the STATUS command.

DATA BLOCK ERROR (bit 1, decimal value 2)

This error bit is maintained in the interface module and may be read by STATUS im­
mediately after a command is refused by Error 139, which can be trapped . In a
block output, the data block was unsuccessfully received from the computer by the
interface module. This error should not occur in normal operation; it indicates pro­
blems in communication between the computer and interface module.

COMMAND ERROR TO INTERFACE MODULE (bit 0, decimal value 1)

This error bit is maintained in the interface module and may be read by STATUS im­
mediately after a command is refused by an Error 139 from the interface module.
This bit indicates that the interface module did not recognize a command sent to it
from the computer, or that the interface module is not configured properly to per­
form the command (see ILLEGAL OPTION COMBINATION ERROR) .

BUFFER CHECKING

During active Concurrent Mode 1/0 , the STATUS command will return the number
of characters in the input buffer in locations 747 and 748, and the number of
characters in the output buffer in location 749. To find the number of characters in
the input buffer in ATARI BASIC:

LET BUFFERUSE = PEEK(747) + 256* PEEK(748)

If you only want to find out whether or not there are characters in the input buffer,
you do not need to multiply by 256:

IF PEEK(747)+ PEEK(748)=0 THEN input buffer empty ...

or:

IF PEEK(747)+ PEEK(748) < > 0 THEN input buffer not empty ...

If you are using the built-in buffer, or if your supplied buffer has fewer than 256
bytes, then location 748 will always be zero and you need to look only at location
747. The output buffer holds only 32 characters; location 749 will never exceed 32.

When Concurrent Mode 1/0 is not active, location 747 will contain information
about the readiness lines (DSR, CTS, and CRX) and the data receive line (RCV) of
the specified port after a STATUS request. (Locations 748 and 749 will not contain
anything useful after a STATUS request when there is no active Concurrent 1/0 .)
Location 747 will conta in the sum of four numbers, shown in Table 10-2. The cur­
rent and past status of DSR, CTS, and CRX as well as the current status of RCV are
included. The past status of DSR, CTS, and CRX applies back to the time the inter­
face module was booted, or to the most recent STATUS command to the specified
port which was made while Concurrent Mode 1/0 was not active (i.e. , the last time
that DSR, CTS, and CRX were supplied to a STATUS request). No other operations
affect the past status of these lines, which is supplied by STATUS. In particular,
whether or not you enable readiness checking before 1/0 (in the SET BAUD RATE
command) will have no effect on the information supplied by STATUS.

Ports 2 and 3 will always show CTS and CRX as being ON. Port 4 will show CTS,
CRX, and DSR as being ON.

This is a quick way to check whether or not a port is ready:

STATUS #n , XXX IF PEEK(747) < 128 THEN not ready ...

or to check if it has stayed ready since the last check:

IF PEEK(7 47) > = 192 THEN always ready ...

In other words, the DSR status bits are the most significant bits in the sense byte,
and you can check them this way without having to worry about the states of the
other bits in the byte .

The Status Command 47

48 The Status Command

Table 70-2 Sense Values Added Into Location 747

DATA SET READY (DSR)
192 Ready now (ON); on since previous STATUS
128 Ready now (ON); not always on si nee last STATUS
64 Not ready now (OFF) ; not always off since last STATUS
0 Not ready now (OFF) ; always off since last STATUS

CLEAR TO SEND (CTS)
48 Clear now (ON) ; on since previous STATUS
32 Clear now (ON); not always on since last STATUS
16 Not clear to send now (OFF); not always off since last STATUS
0 Not clear to send now (OFF); always off since last STATUS

CARRIER DETECT (CRX)
12 Carrier now (ON); on since previous STATUS
8 Carrier now (ON); not always on since last STATUS
4 No carrier now (OFF) ; not always off since last STATUS
0 No carrier now (OFF) ; always off since last STATUS

DATA RECEIVE (RCV)*
1 MARK (1) now
0 SPACE (0) now

*No information is supplied about the past status of RCV.

TRANSFERRING
BASIC SOURCE
PROGRAMS

1 1

SAMPLE PROGRAMS

This section describes a pair of programs that can be used to transfer information
from one ATARI 800 Home Computer to another over the telephone. These two
programs demonstrate an example of the technique called "handshaking." Hand­
shaking, which was described in Section 1, is an overextended term in the com­
puter world. What is meant here is that the receiving program will respond to the
sender with an " I've got it!" message when it has successfully received each line of
information from the sender.

The trick here is that the sending program must not miss the " I've got it! " message.
Likewise, the receiving program must not only have got the line when it says "I've
got it, " but th e receiver must be ready to receive the next line immediately
because, theoretically, the sender might send the next line immediately. These pro­
grams show how this is done.

Both programs operate on one line (up to 255 characters) at a time. Each program
starts by dimensioning its line array, and each asks its user for the filename to be
sent/received. Each program then opens its modem port (R1 :) and disk file
(assuming the send/receive files are disk files).

The RECEIVE program must be started first, in order to be ready for the sender' s first
line. The SEND program will send the first line with no prior signal from the
RECEIVE program.

In line 540, the SEND program gets a line from the disk file . The program then
prints the line on the television sc reen (so you can watch the data being sent).
Then , in lines 570-590, the line is sent over the phone. Note that port R1: is opened
full duplex: SEND assumes when RECEIVE gets the line, that there might be an im­
mediate reply. (Of course, this can't happen but it's best to write the program as
though it could.) In line 600, SEND waits for the reply (a line that is empty except
for an EOL is used as a reply).

The RECEIVE routine, meanwhile, has set itself up to get a line from the modem
(lines 280-290, 530). When line 530 completes (the line of data has been received),
RECEIVE closes the modem port (R1 :) in order to save the data on the diskette (lines
540, 580) and echoes the data on the television screen (line 590). Then RECEIVE
opens the modem again and sends the reply (lines 610-630). Note that port R1: is
opened full duplex: RECEIVE assumes that it might start getting the next line im­
mediately after it has sent its reply. Note also that it is not necessary for RECEIVE to
INPUT the data immediately, but it is necessary that RECEIVE have started the Con­
current Mode data receive (line 620) .

When SEND gets the reply, it knows it can safely close the modem port (R1 :) to get
another line of data from its diskette (lines 600-610) . It then goes back to get
another line of data (lines 530-540) and the whole cycle repeats. Note how the
SEND program checks for the end of the disk file and how it sends a specially en­
coded line (EOF EOF EOF) to the RECEIVE program to signal this. Also note that
both programs explicitly close their files.

Sample Programs 49

50 Sample Programs

To use these programs, assume that you and your friend are talking on the phone
and have prepared your computers (you have loaded your SEND program and
your friend has the RECEIVE program) . You each RUN your programs, and each
program gets a filename from each of you - type the name but don ' t yet press
l;ljii@i . Now one of you sets this modem to A Answer and the other sets his to 0
Originate. Looking at your watches, you decide that your friend will press his
l;ljll@i key as soon as the READY light comes up on his modem and you will press
your l;ljii!;lll key 10 seconds later. In other words, the RECEIVE program must be
ready to receive before the SEND program sends the first line. Now you each put
your phone handsets in the modem muffs and you proceed to send a program to
your friend.

Since these programs work on LINES of data, you cannot send tokenized BASIC.
You should send BASIC source, that is, send a file you saved on the diskette with
the LIST (not SAVE) command. Your friend should ENTER the file he receives (not
LOAD). You may modify these programs to send and receive the information one
character at a time (using GET and PUT instead of PRINT and INPUT) , doing the
handshake every 40 characters or so. You'll have to pay particular attention to the
question of sending the end-of-file information if you try this modification;
however, such a modification should allow you to send any kind of data, not just
lines of text.

The RECEIVE program will probably need modification if you intend to put fhe
received information on cassette. The cassette handler requires that the first
128-byte record be written within about 30 seconds after you OPEN the cassette for
output. A little experimentation should get you going.

Lines 210 and 220 will have to be modified if these programs are to be used for
communications with computers other than an ATARI Home Computer.

52 Sample Programs

RECEIVE PROGRAM

110 DIM INLINE$(255)

200 REM

201 REM = = = = = = = = = =

202 REM

210 LET TRANSLATE= 32:REM Full AT ASCII

220 XIO 38,#5 ,TRANSLATE,O," R1 :"

230 REM

240 PRINT " Receive file ' s full name";

250 INPUT INLINE$

260 OPEN #2,8,0,1NLINE$

270 REM

280 OPEN #5 ,13,0," R1 :"

290 XIO 40,#5,0,0," R1 :" :REM Start 1/0

500 REM

501 REM = = = = = = = = = =

502 REM

510 FOR ETERNITY = O TO 0 STEP 0

520 REM

530 INPUT #5;1NLINE$:REM Get line

540 CLOSE #5:REM Stop 1/0

550 REM

560 IF IN LINE$ = " EOF EOF EOF" THEN 900

570 REM

580 PRINT #2 ;1NLINE$:REM Save line

590 PRINT INLINE$:REM Echo onscreen

600 REM

610 OPEN #5,13,0," R1: "

620 XIO 40,#5 ,0,0," R1 :" :REM Start 1/0

630 PRINT #5 :REM Send reply

640 REM

650 NEXT ETERNITY

900 REM

901 REM = = = = = = = = = =

902 REM

910 CLOSE #2 :REM EOF received

999 END

t

BAUDOT
TERMINAL
EMULATOR

-- ----------~--~~--~---

Here is a sample program showing the use of odd character transmission sizes and
non-AT ASCII (also non-ASCII) character codes. This program turns your AT ARI
Home Computer into a Baudot teletype emulator.

Warning: The ATARI 850 Interface Module was not designed for connection to old
teletype equipment. Such equipment used 60 milliamp current loops rather than
the more modern 20 milliamps. High voltages could be present in such old equip­
ment. These voltages could be dangerous to you and could damage your interface
module. This program is intended to allow you to communicate, via a modem,
over a telephone or radio link with someone owning a Baudot teletype.

The Baudot code is an old 5-bit serial code which is actually two codes in one. Half
of the characters in Baudot are in the LETTERS SHIFT category and half are in the
NUMBERS SHIFT category. The latter category includes digits 0 - 9 and some
special characters. This program takes care of sending and receiving the shifting
control characters.

This program is actually much simpler than it looks. In lines 110 - 210, the
program's symbolic constants and starting values are set up. The symbolic constants
are values which are not changed in the program, but for readability they are
represented symbolically (as variables). Constants include: logical constants (YES
and NO); PEEK and POKE addresses (SWITCH, KB) ; character constants (RETURN,
FEED, UPSHIFT, DOWNSHIFT) ; BASIC line number constants for GOSUBs and
GOTOs (RECEIVE, SEND, and TESTSWITCH); and useful numbers (NOPUSH,
NOKEY) . Setting INSHIFT to zero establishes LETTERS SHIFT for received data; set­
ting ALPHA to YES establishes LETTERS SHIFT for sent data; and setting TALK to NO
establishes LISTEN mode.

Lines 300- 390 fill in the ASCII-Baudot translation tables from the data values in
lines 2000- 2460. Remarks are interspersed in the data to show what character is
being translated. Notice that all the characters are represented within this program
as numbers - the number is the " internal" character code for the corresponding
letter (this is true for both ATASCII and Baudot, but, of course, the numbers
representing a particular letter are different for each).

In order to make the code conversion easy, the translation mode is set to 32- no
translation. The Baud rate is set to 45 .5 Baud (60 wpm). This is the most common
speed for old Baudot equipment.

Lines 500 - 650 are the receive routine. The computer informs you that you are
entering Listen Mode, then opens the RS-232-C SERIAL INTERFACE port R3: for in­
put and starts the Concurrent Mode input (510- 540). The receive loop (560-650)
first does a GOSUB TESTSWITCH to check for switching to Send Mode
(TESTSWITCH is discussed later) . The STATUS and IF PEEK ... statements (580 -585)
see if there are any characters received . If there are, a character is input in line 590
and translated to ASCII in lines 600-630, and printed to the television screen in line
640. AT ASCII table values less than zero mean untranslatable characters; 0 means
the LETIERS SHIFT character is received; 1 means NUMBERS SHIFT.

Sample Programs 53

54 Sample Programs

Lines 700- 950 are the send routine. Talk mode is announced, and port R3: is
opened for output. The first send loop (750- 950) action is a GOSUB TESTSWITCH.
Line 770 checks for the typing of a keyboard key. In lines 780- 800 the key' s value
is retrieved and its high bit is stripped (it is forced to be less than 128 - this has the
effect of disregarding inverse video and allows the conversion to table to require
only 128 elements). The key is translated in line 810; if it translated to zero, that
means it has no Baudot equivalent and line 820 restarts the loop. Otherwise, it is
echoed to the television screen (830); it then undergoes further translation in lines
840- 890, where a LETIERS or NUMBERS shift character is added if needed . Line
900 sends the character itself, and if it was RETURN, lines 920-930 add a LINEFEED
and LETIERS SHIFT.

The TESTSWITCH routine (lines 1000- 1060) checks whether one of the yellow
buttons is pushed (&rmi , EJ!DD or liJimill). If not pushed, TESTSWITCH just
returns . Otherwise, the subroutine waits for the button to be released , restores
BASIC's GOSUB/FOR-NEXT stack, flips from SEND to RECEIVE mode (or vice­
versa) and does a GOTO to the proper routine .

In operation , the 32-character internal buffer fills with characters to be sent. When
the buffer is full , the interface module sends the characters as a block. While the
characters are being sent, the keyboard will accept one character (which you
won' t see on the screen), so you should type the next character you want to send
and wait for it to appear on the television screen . Note that this program, as~writ­
ten , sends the block immediately when you type l;iiii@l . You may want to experi­
ment with variations, such as sending each character as it is typed from the
keyboard (using the FORCE SHORT BLOCK) or reading a line at a time (this allows
you to use backspace to correct your typing, but the person at the other end of the
connection won't see anything except when you type l;iiiii;!ll).

110 DIM ATASCII(64) ,BAUDOT(128)

120 REM

121 REM Set up constants ...

122 REM -----------

130 LET YES = 1 :NO= 0

140 LET SWITCH= 53279: NOPUSH = 7

150 LET KB = 764: NO KEY = 255

160 LET RETURN= 8: FEED= 2

170 LET UPSHIFT= 27:DOWNSHIFT=31

180 LET RECEIVE= 500:SEND = 700

190 LET TESTSWITCH = 1000

200 REM

201 REM Starting values ...

202 REM ----------

210 LET INSHIFT = O:ALPHA= YES:TALK= NO

300 REM

301 REM Fill Baudot to ATASCII table ...

302 REM ----------------

310 FOR I= 1 TO 64

I

320 READ IN

330 LET ATASCII(I) = IN

340 NEXT I

350 REM

351 REM Fill ATASCII to Baudot tabl e ...

352 REM ----------------

360 FOR I= 1 TO 128

370 READ IN

380 LET BAUDOT(!) = IN

390 NEXT I

400 REM

401 REM Set up 1/0 ...

402 REM --------

410 LET BAUD=128+48+1 :TRANSLATE=32

420 XIO 36,#5,BAUD,O,"R3 :"

430 XIO 38,#5 , TRANSLATE,O,"R:3"

440 REM

450 OPEN #1 ,4,0, " K:"

500 REM

501 REM Receive routine ...

502 REM ----------

510 PRINT:PRINT " Listen ... "

520 REM

530 OPEN #5,5,0,"R3:":REM Input

540 XIO 40,#5,0,0,"R3: ": REM Start

550 REM

551 REM Receive loop .. .

552 REM ---------

560 FOR IN LOOP= 0 TO 0 STEP 0

570 GOSUB TESTSWITCH

580 STATUS #5,PORT4

585 IF PEEK(747)=0 THEN NEXT INLOOP

590 GET #5,1N

600 LET IN=ATASCII(IN-224+ INSHIFT + 1)

610 IF IN<O THEN NEXT INLOOP

620 IF IN = O THEN INSHIFT=O:NEXT INLOOP

630 IF IN= 1 THEN INSHIFT = 32:NEXT IN LOOP

640 PRINT CHR$(1N);

650 NEXT INLOOP

Sample Programs 55

56 Sa mple Programs

700 REM

701 REM Send routine .. .

702 REM - --------

710 PRINT:PRINT " Talk .. . "

720 REM

730 OPEN #5,8,0,"R3:": REM Output

740 REM

741 REM Send loop ...

7 42 REM ----- - -

750 FOR OUTLOOP= 0 TO 0 STEP 0

760 GOSUB TESTSWITCH

770 IF PEEK(KB) = NOKEY THEN NEXT OUTLOOP

780 GET #1 ,KEY

790 LET OUT= KEY

800 IF OUT> 127 THEN LET OUT = OUT -128

810 LET OUT= BAUDOT(OUT + 1)

820 IF OUT= 0 THEN NEXT OUTLOOP

830 PRINT CHR$(KEY);

840 IF ALPHA THEN 880

850 IF OUT <0 THEN 900

860 LET ALPHA = YES: PUT #5 ,DOWNSHIFT

870 GO TO 900

880 IF OUT>O THEN 900

890 LET ALPHA = NO: PUT #5,UPSHIFT

900 PUT #5,ABS(OUT)

910 IF OUT<> RETURN THEN NEXT OUTLOOP

920 PUT #5,FEED:PUT #5,DOWNSHIFT

930 XIO 32,#5,0,0,"R3:"

940 LET ALPHA = YES

950 NEXT OUTLOOP

1000 REM

1001 REM Listen/Talk switch test...

1002 REM ---------- - ---

1010 IF PEEK(SWITCH) = NOPUSH THEN RETURN

1020 IF PEEK(SWITCH) < > NOPUSH THEN 1020

1030 POP:POP:REM Pop GOSUB & FO R-l oop

1040 CLOSE #5

1050 IF TALK THEN TALK = NO:GO TO RECEIVE

1060 LET TALK= YES:GO TO SEND

2000 REM

2001 REM Baudot to ATASCII table ...

2002 REM --------------

2010 REM NUL,E, LINEFEED,A,SPACE,S,I,U

2020 DATA -1,69,-1,65,32,83,73,85

2030 REM RETURN , D, R,J,N , F,C, K

2040 DATA 155,68,82,74,78,70,67,75

2050 REM T,Z, L,W ,H,Y,P,Q

2060 DATA 84,90,76,87,72,89,80,81

2070 REM O,B,G,Numbers, M,X,V,Letters

2080 DATA 79,66,71, 1 ,77,88,86,0

2090 REM NULL,3,LF,-,SPACE,BELL,8,7

2100 DATA -1 ,5 1,-1 ,45,32,253,56,55

2110 REM RETURN ,$,4,',COMMA,!, :,(

2120 DATA 155,36,52,39,44,33,58,40

2130 REM 5," ,),2,#,6,0, 1

2140 DATA 53,34,41,50,35,54,48,49

2150 REM 9,?,+, Numbers,.,/,;,Letters

2160 DATA 57,63,43,1,46,47,59,0

2200 REM

2201 REM AT ASCII to Baudot table ...

2202 REM --------------

2210 REM Graphics characters incl . CR

2220 OAT A 0,0,0,0,0,0,0,0

2230 OAT A 0,0,0,0,0,0,0,0

2240 OAT A 0,0,0,0,0,0,0,0

2250 OAT A 0,0,0,8,0,0,0,0

2260 REM SPACE,!,",#,$,%,&,'

2270 DATA 4,-45,-17,-20,-9,0,-26,- 11

2280 REM (,),*,+,COMMA,-,.,/

2290 DATA -15,-18,0,-26,-12,-3,-28,-29

2300 REM 0,1 ,2,3,4,5,6,7

2310 DATA -22,-23,-19,-1,-10,-16,-21,-7

2320 REM 8,9, :,;, <,=,>,?

2330 DATA -6,-24,-14,-30,0,0,0,-25

2340 REM @,A,B,C,D,E,F,G

2350 DATA 0,3,25,14,9,1,45,26

2360 REM H, I,J,K, L,M,N,O

2370 DATA 20,6,11, 15, 18,28, 12,24

2380 REM P,Q, R,S,T,U,V,W

Sample Programs 57

PROGRAMMING
A PRINTER

58 Sample Programs

2390 DATA 22,23,10,5,16,7,30,19

2400 REM X,Y,Z,Graphics characters

2410 DATA 29,21 , 17,0,0,5,0,0

2420 REM A - Z again

2430 DATA 0,3,25 ,14,9,1,45,26

2440 DATA 20,6, 11 , 15, 18,28,12,24

2450 DATA 22,23,10,5,16,7,30,19

2460 DATA 29,21 ,17,0,0,5,0,0

9999 END

Here are two examples of programming printers connected serially through RS-
232-C SERIAL INTERFACE ports. It is assumed that there are fundamental dif­
ferences between the two - the characteristics of each printer control how that
printer must be programmed . These two sample programs (or program fragments)
are not intended to show general techniques, but are examples of how certain
specific needs can be met.

The printer being programmed here is able to buffer and hold characters ahead of
its printing (or it is so fast that it is always ready to accept characters to print) . When
it does not want you to send more data, it sets a READY line OFF; that line is con­
nected here to the DSR pin on the RS-232-C SERIAL INTERFACE port. However, the
printer sets its READY line OFF early- it is still able to collect up to 32 characters
after it says it' s full. In other words, since the RS-232-C SERIAL INTERFACE ports
send data out in blocks of up to 32 characters, it is only necessary to monitor the
DSR line once per block.

The automatic monitoring of DSR once per block is set up in line 150. In line 160,
we tell the interface module to add LF to each CR (this printer wants the LF).

When a block is about to be sent, the interface module checks DSR (per our re­
quest). If it is OFF, the resulting NAK error is trapped (line 360) , and in the TRAP
routine (900 etc.) the program checks that the TRAP was really caused by the DSR
being OFF. If this was the cause, the PRINT is simply retried- eventually it will suc­
ceed because the printer will become ready again .

140 OPEN #5,8,0," R2:"

150 XIO 36,#5,0,4," R2: ": REM Monitor DSR

160 XIO 38,#5,64,0," R2 :":REM Add LF to CR

360 TRAP 900

370 PRINT #5; REM PRINT something to R2 :

900 STATUS #5,PORT2:REM Get R2: status

910 LET READY= PEEK(746)/8:REM Check readiness error

920 IF I NT(READY)<> INT(READY + 0.5) THEN 360:REM If so, retry

930 REM If here then some error other than port-not-ready

The printer being programmed in the example below also has a READY line to
signal that it is not ready to accept data. However, when it is not ready, it ca nnot
accept any data. Therefore, the data must be sent to the printer one character at a
time, checking DSR before each character. Since the PRINT statement cannot be
made to send data one character at a time, we assume that the file to be printed
was first written to a diskette or cassette. Here is a program to read that file off the
diskette or cassette and print it on this printer.

The operation of this program should be fairly obvious. Once again, we assume the
printer wants both CR and LF at the end of a line (lines 230- 240). The file is read
from diskette (or tape) one character at a time. Then if the printer on port R2: is
ready (540 - 550), the character is PUT (560). The output is then forced (FORCE
SHORT BLOCK) in line 570.

110 DIM FILE$(16)

200 REM

201 REM = = = = = = = = = =

202 REM

210 LET BAUD= 13:REM 4800 Baud

220 XIO 36,#5,BAUD,O, " R2: "

230 LET TRANSLATE= 64: REM Add LF to CR

240 XIO 38,#5,TRANSLATE,O,"R2:"

250 REM

260 PRINT " List file's full name";

270 INPUT FILE$

280 OPEN #1 ,4,0, Fl LE$

290 REM

300 OPEN #5,8,0,"R2:"

500 REM

501 REM = = = = = = = = = =

502 REM

510 FOR ETERNITY =O TO 0 STEP 0

520 TRAP 900:REM Trap end of file

530 GET #1 ,CHARACTER

Sample Programs 59

READING
A DIGITIZER

60 Sample Programs

540 STATUS #5,XXX:REM Check ready

550 IF PEEK(? 47) < 128 THEN 540

560 PUT #5,CHARACTER

570 XIO 32,#5,0,0,"R2:"

580 NEXT ETERNITY

900 REM

901 REM = = = = = = = = = =

902 REM

910 CLOSE #5:CLOSE #1

920 END

This is an example of reading data from a digitizing pad. A digitizing pad is a device
that is capable of sensing the position of a handheld object (a special pen or
whatever) and reporting its location to the computer.

The digitizing pad used in this example is capable of sending its information to the
computer at speeds up to 4800 Baud, so that Baud rate is used here. Each ~sampled
pen position is 14 characters long: a digit indicating whether or not the button on
the pen is being pushed, the x-coordinate (6 characters) , the y-coordinate (6
characters), a CR and a LF. Since the LF follows the CR, the interface module will
read it as the first character on the following input line.

If we assume that the digitizer sends the pen coordinates as fast as it can, then
BASIC will not be able to keep up at 4800 Baud. A lower Baud rate might allow
BASIC to get every sample, but at 300 Baud, for example, it would take about half a
second for each sample to come in (15 characters at 30 cps). Thus we want the data
to come in at the highest possible rate . It really doesn't matter if we miss samples,
because the pen is usually in pretty much the same place sample after sample.

Therefore, it is all right if the digitizer sends samples as fast as it can and the pro­
gram just grabs them now and then when it can. However, take into account the
way the interface module behaves when data arrives too fast: when the computer's
holding buffer fills up, the newest data replaces the oldest. An INPUT statement
reads the oldest data - which is messed up by being replaced by the newer data!

This is actually very trivial to solve. Look at line 100. A sample is INPUT twice. The
first INPUT gets the messed-up sample which has been written over by new data.
Then the second INPUT gets a sample from the buffer which is unharmed. (This
works because the sample contains enough characters to allow an INPUT to get
significantly ahead of the arriving character stream, and because the sample con­
tains fewer characters than the holding buffer.)

Lines 110- 130 extract the coordinates from the sample. It was not possible to use
an INPUT statement with these number variables because the sample does not
have commas between the sample numbers. The details of what the program does
with the samples is not shown (in order to keep the example to the important
points) .

10 DIM IN$(16)

20 XIO 36,#5, 13,0,"R2:"

30 OPEN #5,5,0," R2:"

40 XIO 40,#5,0,0," R2: "

100 INPUT #5,1N$:1NPUT #1 ,1N$

110 LET BUTTON = VAL(IN$(2,2))

120 LET X= VAL(IN$(3,8))

130 LET Y= VAL(IN$(9,14))

590 GO TO 100:REM Get next point

Sa mp le Programs 61

RS-232-C
STANDARD

RS-232-C
SPECIFICATIONS

12

INTERFACE MODULE
ELECTRICAL SPECIFICATIONS

RS-232-C is the standard adopted by the Electronic Industries Association (EIA) to
ensure the uniformity of transmission of data between data communications equip­
ment and data processing terminals. This standard is followed by most equipment
manufacturers.

The RS-232-C standard defines a range of values of electrical parameters for a com­
munication link. The ATARI 850 Interface Module is the device used in ATARI
Home Computer to adapt to the values of these parameters. The interface module
organizes the bit stream of communication according to software-coded intruc­
tions.

When we refer to a communication port as a RS-232-C SERIAL INTERFACE port, we
mean that signals to or from that port conform to the RS-232-C standards. We also
use the adjective " RS-232-C-compatible" when the communication conforms to
essential aspects of the RS-232-C standard. Perhaps the most important aspect of
the standard is the specification of voltage levels corresponding to mark and space.
Accordingly, many other publications may use the term " RS-232-C compatible" to
mean " using the voltage levels in the RS-232-C standard."

RS-232-C compatibility has come to cover many devices that are not " data sets" or
" data terminals," particularly in the personal computer world. This usually means
the device conforms to the electrical RS-232-C specification, which is shown in
Table 12-1. Sometimes such devices (which include printers, plotters, digitizing
pads, and many other devices) also have lines that are called DSR, DTR, RTS- and
so on. However, their use is often different from the use covered by the RS-232-C
standard and usually the use is specific to the device. One such use is to signal
readiness to accept data from your computer (as opposed to sending XOFF/XON
over a data line). Unfortunately, there is no standard of how many characters the
device will accept after the line goes OFF, nor a good way to determine where to
start up again when the device becomes ready (if characte rs have been lost). You
will have to familiarize yourself with your device's characteristics and then program
your ATARI Home Computer and the interface module accordingly.

Table 7 2-7 RS-232-C Electrical Specifications

TYPE OF SIGNAL

Binary signal

Signal condition

Control function

FIRST STATE
-24 volts to -3 volts

MARK

OFF

SECOND STATE
+3 volts to +24 volts

0

SPACE

ON

Interface Module Electrical Specifications 63

ELECTRICAL
SPECIFICATIONS
OF THE
SERIAL PORTS

It is common practice when using the 25-pin D-connector most used with RS-232-C
to connect XMT to pin 2, RCV to 3, RTS to 4, CTS to 5, DSR to 6, common signal
ground to 7, CRX to 8, and DTR to 20. However, these conventions may not be
followed ; you may also run into cases where the other pins in the connector have
either entirely unrelated functions (such as other types of communication stan­
dards on the same connector) or possibly related functions (such as setting the
Baud rate by connecting two pins) . Carefully read the instructions of any device you
intend to connect to the ATAR/850 Interface Module! You may have to make your
own cable to connect the device to the interface module.

The RS-232-C standard does not specify how data should be transmitted on XMT
and RCV. In fact, RS-232-C explicitly avoids this issue. Fortunately, common con­
vention and other standards have settled on a fairly universal serial data transmis­
sion convention. When data is not being sent, the data line sits idle in the MARK
state. A data character (sometimes called a transmission WORD) is signalled by one
START BIT, represented by the SPACE state. It is followed by the data bits (most
commonly 8 of them) , each bit being represented by SPACE for 0 and MARK for 1.
The word is terminated by 1 (sometimes 2) STOP BIT(s), represented by the MARK
state. The next word can immediately follow with its start bit. If it does not, the line
stays idle in the MARK state (effectively, the stop bit lasts indefinitely).

The data bits are sent least-significant first. The bit numbered 0 is sent first, 1 pext,
and so on. The receiver does not know when a character will be coming, so it con­
stantly monitors the stopped MARK state looking for the transition to a start bit. The
receiver can then receive the rest of the bits in the word because it knows when
each will arrive- each bit has the same duration as established by the Baud rate of
the communication. Of course, both the transmitter and receiver must use the
same Baud rate.

There are only a small number of common Baud rates, and the ATARI850 Interface
Module supports all of the most common ones. The most common transmission
word size is 8 bits; when sending ASCII , which is a 7-bit code, the 8th bit usually
represents the parity, is just set to 1 or 0, or is used as a marker bit of some sort.
ASCII is very occasionally sent in 7-bit words. The interface module supports 7-bit
words for these cases, and can also be used for communication with 7-bit or 6-bit
codes such as BCD (with or without parity). Five-bit words are also allowed so you
can communicate with old Baudot code teletypes for radioteletype and similar
uses.

Refer to the interface module schematic diagram in Appendix C while reading this
section.

There are basically two types of circuits for the serial port lines: a receiving circuit,
and a transmitting circuit. One of these circuits connects each RS-232-C signal line
to a pin of one of the two computer 1/0 chips in the interface module.

The sending circuit consists of an operational amplifier (op-amp) followed by a
10-ohm protective resistor. The op-amp is driven "to the rail ," and produces
approximately+ 9 volts for SPACE, and- 5.5 volts for MARK (guaranteed at least+
or -5 volts), when driving a 3000-ohm load (3000 ohm is the worst-case load
allowed by the RS-232-C standard; any lower resistance may result in improper
operation). The driver circuit will withstand short circuits to ground, and will with­
stand connect ion to voltages within their driving range. Shorting a driver to a
voltage outside the range -5.5 to + 9 volts may resu It in damage to the interface
module.

64 Interface Module Electrical Specifica tions

PRINTER PORT
SPECIFICATIONS

The receiving c ircuit consists of a diode and transistor whose function is to convert
the minus/plus RS-232-C voltages to the voltages used by the 1/0 chips. A
4700-ohm input resistor protects the outside device from having to deliver too
much current. Notice that the DSR inputs have 1800-ohm resistors attached to
ground which ensure that DSR will seem OFF if nothing is attached to DSR. A long
unterminated wire attached to DSR can cause DSR to go ON and OFF if there is ac­
tivity in other leads in the same cable . This is ca lled the " antenna effect, " because
the unterminated wire acts as an antenna and "receives" the signals in the adjacent
wires.

Port 4 may be set up for 20-mA current loop operation (see Figure C-4, page 90). In
current-loop operation, pins 4 and 7 (RTS + 10v, and RCV) are tied together (pin
numbers are of the 9-pin connector of the interface module). When the attached
teletype keyboard-sending contacts are closed, pin 9 pulls RCV negative (MARK).
This is the idle state of the teletype. Whenever the switch opens during transmis­
sion of a character from the teletype, RCV is pulled posrtive (SPACE). Notice that if
the teletype is turned off, this switch may be open and the interface module will
receive a BREAK signal.

For current loop output, the teletype' s printer solenoid is tied between pins 1 and 3
(+ 10v DTR and XMT). XMT is normally negative (MARK) ; thus the solenoid is ac­
tivated in the MARK state. XMT goes to nearly+ 10v for SPACE so very little current
passes through the solenoid and it disengages. Be careful when conn~cting a cur­
rent loop device that it does not apply excessive voltages to the interface module.
Also note that if the send and receive loops are connected together within the
teletype the send or receive loop may not work correctly (the signal may be
shorted out). If this happens, try swapping the send or receive wire pairs .

Refer to the interface module schematic in Appendix C and the printer port timing
diagrams (Figure 12-1).

All signals on the printer port are TIL level (0 to+ 5 volts). The output lines are buf­
fered by transistors to supply the necessary drive for the printer electronics . Input
lines are buffered to protect the 1/0 chips.

The open-collector output circuit can sink 5 mA. That is, the circuit is capable of
pulling 1000-ohm pull-up resistors in the printer to TIL zero. The output circuit ex­
pects some such pull-up in the printer; if pull-ups are not present, the output lines
will be pulled to + 5 volts only by the internal 10,000-ohm pull-up resistors and the
lines may slew too slowly to TTL one.

The interface module detects the presence of the printer via the FAULT line. If this
line is low, the interface module will not respond to printer requests from the com­
puter. This line is low if the ATARI 825 Printer is turned off (or disconnected) . This
feature allows you to connect more than one ATARI printer to the computer, and
switch between them by turning only one of them on at a time . If you attach your
own printer to the printer port, FAULT must be high (TTL one) for the interface
module to operate the printer. If there is no appropriate signal from your printer to
which FAULT may be attached, you may connect FAULT (pin 12) to the +5 volt
pull-up at pin 9. Be sure you do not connect FAULT to a busy-type line which will
alternate on and off; FAULT should stay on. Do not attach FAULT to a voltage
above + 5 volts.

The eight data lines are positive-logic . The data lines normally rest at zero (ASCII
NULL). A data byte is sent to the printer (when it is not BUSY) by placing the data
on the eight data lines and pulsing the data STROBE. The STROBE is normally high,
and goes low during the strobe pulse.

Interface Module Electrica l Specifications 65

After sending each data byte to the printer, the interface module waits for a BUSY
signal. The ATARI 825 80-Column Printer sends a positive-logic BUSY signal as it
processes each byte of data. The BUSY is quite short for most data bytes since the
printer merely saves each character in its own memory, but BUSY is quite long
when the printer prints. The interface module does not care how long the printer is
BUSY- the only requirement is that the printer respond to all 40 characters (that
is, go not BUSY after the last character) within 30 seconds. Immediately after BUSY
goes low again, the interface module sends the next character to the printer. When
all the characters have been accepted by the printer, the interface module signals
the computer that the print operation is finished .

Note: Early versions of the ATARI 850 Interface Module will wait four seconds for
the printer to respond. If you suspect that you may have an early version, contact
your nearest Authorized ATARI Computer Service Center for details on upgrading.

Some printers using the Centronics-type interface do not signal BUSY for each
character received , but only go BUSY during printing. For this reason , the interface
module only waits 200 microseconds for BUSY after sending a data byte . If BUSY
does not go on within this time, the interface module sends the next character,
assuming the printer has completed its processing of the preceding character.

Figure 7 2-7 Timing of Printer Ports

Data 0-7 I I
etc.

I I
I I

Strobe I

~ v I /etc.
I I \
I

I

1..__37 37 I 37 200* I
to ---1

I !-IS !-iS I I !-IS !-iS
I I I /etc.
I 0 ~ I Busy I

I I 50 !-iS I 80* * * I
I I.-min**~ -1
I I !-iS I
t.-- 50.~-tw

mm

*One byte sent every 280 microseconds without BUSY
**Pulse must be > 50 microseconds, no maximum. However, 40 characters

must be accepted by the printer in 30 seconds.
***Approximate

****BUSY may follow either leading or trailing edge of STROBE. However, it
must remain at least 50 microseconds after trailing edge of STROBE.

66 Interface Module Electrical Specifications

SOFTWARE
O PERATION

13

PRINCIPLES OF OPERATION

The ATARI 850 Interface Module is an "intelligent" device. It contains a
microprocessor, bui lt-in program in ROM, and extensive 1/0 capability . The 1/0
forms the PARALLEL INTERFACE (printer) and SERIAL INTERFACE (RS-232-C) ports,
and is also used for communication between the interface module and the ATARI
400 or ATARI 800 Home Computer.

Once booted, the RS-232-C SERIAL INTERFACE port handler is linked in as the R:
device. This handler contains code to reestablish itself whenever a Ji'ti'MI;IiiMI oc­
curs .

The RS-232-C handler is called by the Central! nput/Output subsysteiJl (CIO) to exe­
cute each type of 1/0 operation for the R: device. (The CIO is that part of the OS
that handles input/output.) The exception to this is output calls from BASIC which
bypass CIO by calling the RS-232-C handler directly. Some of the commands are
executed entirely by the handler (set-up) , but most are passed on to the interface
module. Some commands cause set-up in both the handler and in the interface
module.

The CONFIGURE BAUD RATE command is a set-up command which is executed
by both the handler and the interface module. Both the handler and the interface
module keep separate tables for each of the four RS-232-C SERIAL INTERFACE
ports. This command allows you to set the Baud rate, " word " size, number of stop
bits to transmit, and enable or disable the checking of DSR, CTS, and CRX. See Sec­
tions 4, 5, and 9 for further definitions and details .

The CONFIGURE TRANSLATION MODE command is executed by the handler.
This command sets values that control the translation and parity handling during
1/0. See Sections 4, 6, and 9 for further definitions and details .

The CONTROL command is executed by the interface module. Outgoing control
lines for the indicated port are set ON (or MARK), set OFF (or SPACE), or left alone,
as specified by the contro l parameter. Each line is left alone until another CON­
TROL command is executed. Note that if the XMT line is set to SPACE, it will return
to SPACE following any subsequent data transmission until another CONTROL
command sets it to MARK. See Sections 4, 7, and 9 for more information.

The OPEN command is executed entirely by the handler. It establishes control
information for the port being opened. The CLOSE command is executed mostly
by the handler; OPEN flags are cleared; any data in output buffers is sent; Concur­
rent Mode 1/0 is shut down. Any data in an input buffer is lost at CLOSE time. See
Sections 4 and 8.

Principles of Operation 67

68 Principles of Operation

Block Mode output takes data from BASIC PRINT or PUT statements, puts each
character through translation , and puts each character into the 32-byte output buf­
fer. The buffer is tran smitted when it fills, or when 13 (decimal) is stored into the
buffer (automatic short block on CR) . Data from the buffer is sent to the interface
module as 8-bit bytes. If 7-, 6-, or 5-bit words are configured, the interface module
strips the necessary number of high-order bits from each byte before transmitting it
to the port. If monitoring of any external status line has been configured for the
port, the readiness is checked by the interface module whenever a block is sent to
it. If not ready, the interface module returns a NAK. The ATARI Home Computer
waits while the interface module transmits a block.

The FORCE SHORT BLOCK command causes the handler to transmit the block of
data before 32 bytes have been collected. If there is no data in the buffer, the
FORCE SHORT BLOCK command has no effect. See Section 4 and Appendix B.

When START CONCURRENT MODE 1/0 is performed, a number of things occur.
The handler marks the Concurrent Mode 1/0 as active (if there are no errors while
starting Concurrent Mode 1/0). The handler sets up its own serial input/serial out­
put interrupt handlers as necessary (depending on 1/0 direction) to field data going
in and out. The handler establishes the initial (empty) state of the input and output
buffers. Then the handler informs the interface module that Concurrent Mode 1/0
should be started.

During Concurrent Mode 1/0, each character being received from the interface
module is taken in by the handler's interrupt driver and placed in the input buffer.
Characters to be sent to the interface module are translated and put in the output
buffer. As the serial hardware in the computer finishes sending each character, the
output interrupt driver immediately sends another character from the buffer (unless
it is empty). If the input buffer overflows, an error is flagged; output buffer overflow
stops putting data into the buffer until data is sent to free buffer space. See Sections
4, 9, and 10 for more information.

Input and output statements (GET, PUT, PRINT, INPUT) executed to a channel
through which Concurrent 1/0 is active do not directly cause any 1/0 to the RS-232-
C SERIAL INTERFACE port. Rather, input statements simply retrieve data that is in
the input buffer (translation occurs at this time) , and output statements put data in­
to the output buffer. If an input statement wants more data but the input buffer is
empty, BASIC will wait until the data arrives. If an output statement attempts to put
data into a full output buffer, BASIC will wait until space becomes ava ilable. This is
a result of the interrupt-driven sending of data from the output buffer, which starts
as soon as data is put into the buffer. The data is moved into and out of each buffer
c ircularly- that is, the buffer is automatically reused. The maximum amount of data
a circular buffer can hold at once is one byte less than its size.

The interface mod~le handles Concurrent 1/0 in one of two ways. The most com­
mon mode is used when 8-bit words are being transmitted, no matter what th e rate
or 1/0 direction. In this mode, the interface module "connects" (through the inter­
face module's microprocessor) the transmit (XMT) and receive (RCV) lines of the
se lected port to th e 1/0 connector goi ng to the computer. Th e data is not inter­
preted by the interface module in this mode; all serialization of the data is per­
formed by the se ria l 1/0 hardware in the computer console. Note that the "con­
nection" between the RS-232-C SERIAL INTERFACE port and the computer's
peripheral 1/0 port is handled by softwa re . Each line coming into the interface
module (one from the computer, one from the RS-232-C SERIAL INTERFACE port)
is sampled (checked) over and ove r, and its va lue is then passed on to the ''con­
nected" outgoing line. The sampling rate is 34.6 kHz; the lines are sampled every
28.9 microseconds.

PRINTER
SOFTWARE
OPERATION

The other Concurrent Mode 1/0 is established in the interface module for low
speed (300 Baud or less) 7-, 6-, or 5-bit input (half-duplex). In this mode, the inter­
face module receives a 7-, 6-, or 5-bit character from the port and then transmits a
corresponding 8-bit character to the computer. This is done because the
computer's hardware is not capable of receiving anything but 8-bit serial words.
The interface module receives the data by sampling it at a rate of 16 samples per
bit. As each character is sent from the interface module to the computer, extra
high-order 1-bits are added to get 8-bit words. The interface module sets an internal
error flag if a framing error occurs in the incoming data. This flag may be queried
with STATUS after the Concurrent 1/0 is stopped.

The interface module leaves Concurrent Mode when it is instructed by the handler
when the Concurrent 1/0 IOCB is closed , either with a BASIC command or when
the program "runs off the end."

The interface module is constantly keeping track of all incoming RS-232-C
readiness lines, for the purpose of being able to report their state to the STATUS
command. This does not apply to the RCV lines or any lines on the printer port.
The readiness lines are checked periodically through sampling. The sampling rate
depends on the activities the interface module is asked to perform. In order not to
be missed, a pulse on a readiness line should be at least a few dozen milliseconds
in duration .

The STATUS command is performed either by the RS-232-C handler alone (when
Concurrent 1/0 is active) or by both the handler and the interface module. In the
former case, the handler supplies the user with information about its current opera­
tion . In the latter case, the handler combines some of its own information with
status and sense information supplied by the interface module. See Section 10 for
more information .

The interface module responds to commands to an ATARI printer whenever it
senses a printer attached to the parallel port (see Parallel Printer Port Specifications,
Section 12, for signal requirements between the interface module and a printer).

The AT ARI Home Computer Operating System contains a printer handler program
which will address one printer, called P:. Four commands are allowed by the P:
handler: OPEN, CLOSE, output (represented by PUT, PRINT, and LIST in BASIC),
and STATUS.

To use the printer, one must OPEN an IOCB to the printer. CLOSE releases the
IOCB when it is no longer needed .

ATARI printers and the interface module operate in Block Output Mode (as
described in Section 4 of this manual). The printer handler builds a 40-byte buffer,
and when the buffer fills, the 40 bytes are sent to the printer. When a printer is
attached to the interface module, the interface module accepts the 40 characters
and sends them, one at a time, over the PARALLEL INTERFACE port to the attached
printer. The printer must acknowledge all 40 characters within 30 seconds (four
seconds on early models). If it cannot, the computer will return an error (usually
139). See the note at the end of this section.

There is one exception to the above description: When the printer handler is asked
to print an ATASCII End-of-Line character, it fills any unused part of the
40-character buffer with blanks (following the EOL) and sends it immediately. For
this reason, the interface module ignores any characters in the buffer that follow an
EOL.

Principles of Operation 69

70 Principles of Operation

The interface module translates EOL into ASCII CR (Carriage Return , 13 decimal) .
No other translations are made. In particular, bit 7 (high bit) of each byte is not
changed, and LF is not added following CR. However, multiple EOL's in a row,
without intervening characters, are sent to the printer as alternating CR' s and
blanks.

A special note about LPRINT in BASIC: LPRINT is equivalent to OPEN, PRINT and
CLOSE all in one. Execution of an LPRINT statement with a comma or semicolon at
the end will send to the interface module a 40-character buffer which is padded
with blanks but does not have an EOL character. The interface module will send all
40 characters to the printer (including the blanks), but the printer will probably not
respond because most printers wait for CR before activating a print cycle.
Therefore, LPRINT should not be used when you want a comma or semicolon on
the end of your statement. Use PRINT in those cases. LPRINT uses IOCB #7 ex­
clusively.

The STATUS request for device P: is answered by the interface module if there is a
printer attached and it is turned on. The status returned in location 746 (decimal) is
128 if the previous operation to the printer was successful; 129 if the previous com­
mand to the interface module printer port was bad; 130 if the previous 40-byte data
frame had an error (this should not happen) ; and 132 if the previous command
timed out-that is, the printer stayed BUSY more than 30 seconds.

NOTICE

Use of multiple printer control codes that involve carriage motion (with the
exception of end-of- line), may cause an ERROR 139 (Device NAK). Car­
riage motion includes backspace, forward and reverse linefeeds, and par­
tial linefeeds.

The ATARI 850 Interface Module sends data to the printer in 40-character
blocks. If there is more than one carriage motion in each block, the printer
may not recover in time to receive the next 40-character block.

If you should have this problem, check your program. Try to arrange your
printer control codes in such a way that there is no more than one carriage
motion in each 40-character block. This can be done by preceding each
carriage motion with 40 " null" characters. Null characters can be
generated with control comma (&ml,l or with the BASIC command
CHR$(0).

APPENDIX A

CODE TABLES

Table A-1. Decimal , Hexadecimal , ASCII , ATASCII Code

AT ASCII ASCII
DECIMAL CODE HEXADECIMAL CODE CHARACTER CHARACTER MEANING

00 00 rl NUL Null

01 01 ~ SOH Start of heading

02 02 11 STX Start of text

03 03 !] ETX End of text

04 04 Cl EOT End of transmission

05 05 ril ENQ Enquiry ~

06 06 r..i ACK Acknowledge

07 07 ~ BEL Bell

08 08 rJ BS Backspace

09 09 I! HT Horizontal tabulation

10 OA [:!Ill LF Line feed

11 OB Iii VT Vertical tabulation

12 oc Iii FF Form feed

13 OD Iii CR Carriage return

14 OE !! so Shift out

15 OF fl 51 Shift in

16 10 r:J OLE Data line escape

17 11 [il DC1 Device control 1 (XON)

18 12 = DC2 Device control 2

19 13 c::= DC3 Device control 3 (XOFF)

20 14 (] DC4 Device control 4

21 15 Cl NAK Negative acknowledge

22 16 [) SYN Synchronous idle

23 17 ;:; ETB End of transmission block

24 18 ~ CAN Cancel

25 19 [] EM End of medium

26 1A [! SUB Substitute

Appendix A 71

AT ASCII ASCII
DECIMAL CODE HEXADECIMAL CODE CHARACTER CHAR MEANING

27 1 8 II ESC Escape

28 lC II FS File separator

29 10 a GS Group separator

30 1 E II RS Record separator

31 1 F a us Unit separator

32 20 SP Space

33 21 • Exclamation point

34 22 • Quotation mark

35 23 a # Number sign

36 24 a $ Dollar sign

37 25 • 'Yo Percent sign

38 26 a & Ampersand

39 27 • Apostrophe

40 28 a Opening parenthesis~

41 29 II Closing parenthesis

42 2A a * Asterisk

43 28 • + Plus

44 2C • Comma

45 20 • Hyphen (minus)

46 2E • Period (decimal point)

47 2F • Right Slant

48 30 II 0 Zero

49 31 • One

50 32 • 2 Two

51 33 II 3 Three

52 34 • 4 Four

53 35 a 5 Five

54 36 • 6 Six

55 37 II 7 Seven

56 38 • 8 Eight

57 39 II 9 Nine

58 3A • Colon

59 38 • Semicolon

60 3C • < Less than

72 Appendix A

AT ASCII ASCII
DECIMAL CODE HEXADECIMAL CODE CHARACTER CHAR MEANING

61 30 • Equals

62 3E • > Greater than ...
63 3F • Question mark

64 40 • @ Commercial at

65 41 II A Uppercase A

66 42 II B Uppercase B

67 43 II c Uppercase C

68 44 II D Uppercase D

69 45 II E Uppercase E

70 46 II F Uppercase F

71 47 II G Uppercase G

72 48 II H Uppercase H

73 49 a Uppercase I

74 4A II Uppercase J

75 48 II K Uppercase K

76 4C a L Uppercase L

77 40 Ill M Uppercase M

78 4E a N Uppercase N

79 4F II 0 Uppercase 0

80 50 II p Uppercase P

81 51 II Q Uppercase Q

82 52 II R Uppercase R

83 53 • s Uppercase S

84 54 a T Uppercase T

85 55 II u Uppercase U

86 56 II v Uppercase V

87 57 II w Uppercase W

88 58 a X Uppercase X

89 59 a y Uppercase Y

90 SA II z Uppercase Z

91 58 a Opening bracket

92 sc • \ Left slant

93 50 • Closing bracket

94 SE II 1\ Circumflex

Appendix A 73

AT ASCII ASCII
DECIMAL CODE HEXADECIMAL CODE CHARACTER CHAR MEANING

95 SF 1!!1 Underscore

96 60 a Grave accent

97 61 II a Lowercase a

98 62 II b Lowercase b

99 63 • c Lowercase c

100 64 II d Lowercase d

101 65 • e Lowercase e

102 66 II Lowercase f

103 67 II g Lowercase g

104 68 II h Lowercase h

105 69 • Lowercase i

106 6A • j Lowercase j

107 68 II k Lowercase k

108 6(a Lowercase I

109 6D a m Lowercase m

110 6E II n Lowercase n

111 6F II 0 Lowercase o

112 70 II p Lowercase p

113 71 II q Lowercase q

114 72 • Lowercase r

115 73 • s Lowercases

116 74 II Lowercase t

117 75 1!1 u Lowercase u

118 76 II v Lowercase v

119 77 II w Lowercase w

120 78 a X Lowercase x

121 79 II y Lowercase y

122 7A II z Lowercase z

123 78 a Opening brace

124 7(n Vertical line

125 7D II Closing brace

126 7E a f"\J Tilde

127 7F a DEL Delete

74 Appendix A

DECIMAL CODE HEXADECIMAL CODE ATASCII CHARACTER

128 80 ~
129 81 [E]
130 82 OJ
131 83 ~
132 84 BJ
133 85 5]
134 86 [Zl
135 87 IS]
136 88 ~
137 89 [!]
138 8A ~
139 8B ~
140 8C ~
141 8D EJ
142 8E [;]
143 8F [!]
144 90 ~
145 91 ~
146 92 El
147 93 [±]
148 94 00
149 95 ~
150 96 []
151 97 ~
152 98 ~
153 99 [[]
154 9A ~
155 98 []
156 9C [!]

*For any AT ASCII va lue above 127, the video display of that value will be in inverse video (blue on white instead of white on blue) as compared to that same
value minus 128.
Example: AT ASCII 128 displays a blue heart on a wh ite background, while AT ASC II 0 (128 minus 128) displays a white heart against a blue background. For
character transmission, however, the interface module w ill automatically subtract 128 from any AT ASCI I value exceeding 128. Therefore, any inverse video
characte r will be transmitted as a normal character.
Addi tional changes may occur to cert ain AT ASCII control characters during character transmission (see Sect ion 6, "Setting the Translation Modes and Parity
Handling").

Appendix A 75

DECIMAL CODE HEXADECIMAL CODE AT ASCII CHARACTER

157 9D 0
158 91: EJ
159 9F G
160 AO D
161 A1 ~
162 A2 0
163 A3 0
164 A4 0
165 AS 0
166 A6 0
167 A7 8
168 A8 ~
169 A9 0
170 AA G
171 AB G
172 AC D
173 AD El
174 AE D
175 AF 0
176 BO 0
177 81 0
178 82 0
179 83 0
180 84 ~
181 85 0
182 86 0
183 87 0
184 88 0
185 89 0
186 BA D
187 BB []
188 BC [3]
189 BD 0
190 BE GJ

76 Appendix A

DECIMAL CODE HEXADECIMAL CODE ATASCII CHARACTER

191 131- []
192 co CJ
193 C:1 0
194 C2 0
195 C3 0
196 C4 ~
197 C5 0
198 C6 0
199 C7 0
200 CB 0
201 C9 0
202 CA 0
203 CB 0
204 cc [g
205 CD G
206 CE 0
207 CF 0
208 DO 0
209 01 ~
210 02 0
211 D3 0
212 04 0
213 05 0
214 06 G
215 07 0
216 08 0
217 09 0
218 DA 0
219 DB 0
220 DC []
221 DO CD
222 DE G
223 OF [;]
224 1::0 0

Appendix A 77

DECIMAL CODE HEXADECIMAL CODE AT ASCII CHARACTER

225 E1 0
226 E2 GJ
227 E3 0
228 E4 0
229 E5 0
230 E6 ~
231 E7 0
232 E8 G
233 E9 0
234 EA 0
235 EB G
236 EC 0
237 ED B
238 EE 0
239 EF 0
240 FO 0
241 F1 GJ
242 F2 0
243 F3 0
244 F4 ~
245 F5 0
246 F6 0
247 F7 0
248 F8 0
249 F9 0
250 FA 0
251 FB 0
252 FC [JJ
253 FD B)
254 FE [!]
255 FF 0

78 Appendix A

BAUDOT CODE Below is a table of the most common Baudot codes. All Baudot codes are identical
for letters, numbers, and control characters, but some may differ in punctuation .
The DECIMAL VALUE column gives the 5-bit Baudot serial binary code converted
to decimal. When transmitted , a start bit (space) precedes the character, the
character itself is sent low bit first, and 1.5 or 2 stop bits (mark) follow. Mark is sent
for 1, space for 0.

The HEX/DEC columns show the value of the Baudot character when interpreted as
an 8-bit word with the three high-order bits set to 1. These are the codes which
represent the Baudot characters with the interface module's no-translation mode
(translation mode 32).

DECIMAL
LETTERS FIGURES VALUE HEX/DEC

A -(dash) 3 E3/227
B 25 F9/249
c 14 EE/238
D $ 9 E9/233
E 3 1 E1 /225
F ! 13 ED/237
G + or & 26 FA/250
H #or STOP 20 F4/244
I 8 6 E6/230
J ' (apost.) 11 EB/235
K (15 EF/239
L) 18 F2/242

M . (period) 28 FC/252
N , (comma) 12 EC/236
0 9 24 F8/248
p 0 (zero) 22 F6/246
Q 1 (one) 23 F7/247
R 4 10 EA/234
s BELL 5 E5/229
T 5 16 F0/240
u 7 7 E7/231
v 30 FE/254
w 2 19 F3/243
X I 29 FD/253
y 6 21 F5/245
z 17 F1 /241

NULL NULL 0 E0/224
RETURN RETURN 8 E8/232

LINEFEED LINEFEED 2 E2/226
SPACE SPACE 4 E4/228

LETIERS LETIERS 31 FF/255
FIGURES FIGURES 27 FB/251

Appendix A 79

FORCING EARLY
TRANSMISSION
OF OUTPUT
BLOCKS

SETTING
THE BAUD,
WORD SIZE,
STOP BITS,
AND READY
CHECKING

APPENDIX B

XIO COMMANDS AND TABLES

IOCB is an acronym for Input/Output Control Block . It is that portion of the com­
puter's Operating System that control s the input and output of data within the
system.

IOCB is the number of the IOCB that BASIC commands for this port must use. From
the ATARI BASIC language the use r has seven IOCBs to use, numbered 1 through
7.

The Operating System uses IOCB #7 for LPRINT and IOCB #6 for Graphics Modes
functions. These IOCBs may be used, but care must be taken not to use LPRINT or
Graphics Mode functions while the appropriate IOCB is open.

Note: It is strongly suggested that to save yourself problems, you assign IOCBs
with numbers othe r than 6 or 7. You shou ld also use IOCB #5 for Concurrent 1/0.

Rn: is the SERIAL INTERFACE port being opened; n can be 1, 2, 3, or 4. R: is inter­
preted as Rl : For a given port, no more than one IOCB may be open at one time.

The BASIC form of the FORCE SHORT BLOCK command is:

Format: XIO 32, #IOCB, Aux1, Aux2, " Rn:"
Example: XIO 32, #5, 0, 0, " R1 :"

32 specifies the FORCE SHORT BLOCK command.

Aux1 and Aux2 are ignored in this com mand . In general , set these parameters at
zero.

Format: XIO 36, #IOCB, Aux1 , Aux2, " Rn: "
Example: XIO 36, #5, 138, 6, " R:"

This command sets the Baud rate, word size, and number of stop bits in transmitted
messages. It also controls the checking of incoming control signals. 36 specifies this
command .

Aux1 is coded to specify three variables- Baud, word size and the number of stop
bits. The coding is given in Tables B-1 , B-2, and B-3. Add one number from each
table.

Aux2 is coded to specify which of the incoming control signals (if any) should be
checked. These signals are DSR (Data Set Ready) , CTS (Clea r to Send) and CRX
(Carrier Detect). The cod ing is given in Table C-4. (See Section 5 for a detailed ex­
planation of this checking.)

Appendix 8 81

82 Appendix 8

Table B-7 Baud Rate Specifiers To Add to Aux 7

ADD

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

BAUD RATE
(bits per second)

300
45.5*
50*
56.875*
75**
110
134.5***
150
300
600
1200
1800
2400
4800
9600
9600

*These Baud rates are useful for communications with Baudot teletypes, for
RTTY (radioteletype) applications. They are more commonly referred to as 60,
67, and 75 words per minute.

**This Baud rate is sometimes used for ASCII communications and may also be
used for 5-bit Baudot RTIY. The latter is commonly referred to as 100 wpm.

***This Baud rate is used by IBM systems.

Table B-2 Word Size Specifiers To Add to Aux1

WORD SIZE
ADD (bits)

0 8
16 7
32 6
48 5

Table B-3 Specifier for Two Stop Bits To Add to Aux1

ADD

0
128

STOP BITS SENT
WITH EACH

WORD

1
2

..

SETTING
TRANSLATION
MODES
AND PARITY

Table 8-4 Aux2 Specification To Check DSR, CTS, CRX

ADD TO MONITOR

0 None
1 CRX
2 CTS
3 CTS, CRX
4 DSR
5 DSR, CRX
6 DSR, CTS
7 DSR, CTS, CRX

Format: XIO 38, #IOCB, Aux1, Aux2, " Rn:"
Example: XIO 38, #5, 64, 33, "R2:"

This command controls the translation of internal codes and external codes. For ex­
ample, ASCII to ATASCII. 38 specifies this 1/0 comm and.

Aux1 is coded to specify the translation mode, input parity mode, output parity
mode and whether a Line Feed is added after Carriage Return . The coding is given
in Tables B-5, B-6, B-7 and B-8. Add one number from each table.

Aux2 is the number equivalent to the " won't translate" character in one translation
mode. (See Section 6 for detailed explanation.)

Table 8-5 Tran slation Mode Options Added to Auxl

Add

0
16
32

To Get

Light AT ASCII/ ASCII translation
Heavy AT ASCII/ ASCII translation
No translation

Table 8-6 Input Parity Mode Options Added to Auxl

Add

0
4
8
12

To get

Ignore and do not change parity bit
Check for odd parity, clear parity bit
Check for even parity, clear parity bit
Do not check parity but clear parity bit

Appendix 8 83

---------------------· ---

CONTROLLING
THE OUTGOING
LINES DTR,
RTS, AND XMT

84 Appendix 8

Table 8-7 Output Parity Mode Options Added to Aux 1

Add

0
1
2
3

To get

Do not change parity bit
Set output parity odd
Set output parity even
Set parity bit to 1

Table 8-8 Append Line Feed Options Added to Aux 1

Add

0
64

To get

Do not append LF
Append LF after CR (translated from EOL)

Format: XIO 34, #IOCB, Aux1 , Aux2, " Rn :"
Example: XIO 34, #5, 160, 0, " R1 :"

This controls the use of XMT and the outgoing control lines DTR, RTS.

34 specifies this 1/0 command.

Aux1 is coded to specify control of DTR, RTS, and XMT. The coding is given in
Tables B-9, B-1 0, and B-11 . Add one number from each table.

Aux2 is not used by this command. It should be set to zero.

Add

0
128
192

Add

0
32
48

Table 8-9 Control Valu es for DTR Added to Aux1

To get

No change from current DTR setting
Turn DTR OFF
Turn DTR ON

Table 8- 10 Control Values for RTS Added To Aux 1

To get

No change from current RTS setting
Turn RTS OFF
Turn RTS ON

Table B-11 Control Values for XMT Added To Aux1

Add

0
2
3

To get

No change from current XMT setting
Set XMT to SPACE (0)
Set XMT to MARK (1)

Starting Concurrent 1/0 Mode

Format: XIO 40, #IOCB, 0, 0, " Rn: "
Example: XIO 40, #5, 0, 0, "Rn:"

This command is used to start Concurrent 1/0 Mode. 40 specifies this 1/0
command .

With this command- the input buffer is in the handler in the computer. The buffer
holds 32 bytes. For some purposes a longer buffer is more convenient. Section 11
shows how to specify any size of buffer. The BASIC coding is more complex.

Note: Failure to terminate Concurrent Mode 1/0 properly before attempting 1/0
to other peripherals (or even other SERIAL INTERFACE ports) will probably result in
program failure. The only way to recover from such failure is to turn the computer
console off and then on again, which results in the loss of the information stored in
RAM.

Appendix 8 85

APPENDIX C

PORT DIAGRAMS
AND INTERFACE

MODULE SCHEMATIC

Pin 3 Send Data (Out)

Pin 4 Receive Data (In)------,

Pin 5 Signal Ground ------,

Pin 2 Carrier Detect
(CRX, In)

...-----Pin 1 Data Terminal Ready
(DTR, Ready Out)

Pin 8 Clear to Send
(CTS, In) c:..__ __ __,

Pin 6 Data Set Ready
._______ (DSR, Ready In)

Pin 7 Request to Send (RTS, Out)

Figure C-1 Pin Fun ctions of SER IAL INTERFACE Port 1 (9-pin female connector)

Appendix C 87

Pin 4 Receive Data (In) --------.,

Pin 5 Signal Ground ------,

r------- Pin 3 Send Data (Out)

r---- Pin 1 Data Terminal Ready
(DTR, Ready Out)

'----~Pin 6 Data Set Ready
(DSR, Ready In)

Figure C-2 Pin Functions of SER IAL INTERFACE Ports 2 and 3
(9-pin female connector)

88 Appendix C

.------- Pin 3 Send Data (Out)

r---- Pin 1 Data Terminal Ready
(DTR, Ready Out)*

*These pins are not computer-controlled and are always ON(+ lOv).

Figure C-3 Pin Functions of SERIAL INTERFACE Port 4 (9-pin female connector)

Appendix C 89

TTY Printer
Solenoid

~ 1 Send Data +

~

90 Appendix C

3 Send Data

7 Receive Data +

1 4 3~ I TTY Keyboa.d
~ Contact

'---- 9 Receive Data

Figure C- 4 Hook Up of SERIA L IN TER FACE Po rt 4 for Use
W ith a 20-mA Loop Device

Pin 5 Data Bit 3 --------.,

Pin 6 Data Bit 4 ------,

Pin 7 Data Bit 5 ------,

Pin 8 Data Bit 6 - ---,

Pin 15 Data Bit 7 - -----'

Pin 13 Busy ___ __ __J

,--------- Pin 4 Data Bit 2

,-------- Pin 3 Data Bit 1

.----- Pin 2 Data Bit 0

.----Pin 1 Data Strobe

Pin 9 Data Pins
'------ Pull-Up (+ 5v)

'----- --- Pin 11 Signal Ground

Pin 12 Fault

Figure C-5 Pin Functions of the Printer Port (1 5-pin female connector)

t5V

NOTE:
Q

lcl49
[I

1. UNLESS OTHERWISE SPECIFIED

{A) All CAPACITORS ARE IN J,J F

(s) All RESISTORS ARE I N OHMS ,l/4w, 5%
(c) ALL DIODES ARE 1N914

RIIO
IOK

~RI70
100!1

t5V ~~¥~ 14;---------==±-----~1

~ ·"vv 12 AliDA < Rill

~ AI02 ~ Cs Fl~: c,jgll ± ~3 ~ IOK 2
vu - · ~ RI02 1 r--------=-~----------~~-±----------1

~~....;~':::~r.,;~r.:;~:..::;;~~~'::T~~~---1 20 -::- ~.~KA 2 AI lOB "). Rll2 "'N ~ l:l ~, .. " - ~-.. I T 1 1 Vu Cl02 I 3 ';> IOK

S
33

DO PBOf'2"'4~---------------------jf------------------------' .OOI - Rl03 ~ 14r-----------------±------------13

01 PBI t
23

!.t===========t===========--L--------~-;__JI?~/\K0----------_EI2-t z-------.
30 ~~ PB2 1'~"~~----------------------~--------------------, , :::!::: v ~; IIA < Rll3

.. o4 ~:!1'~"'•------------------------~-------------, c~T ~ RI04 - ? IOK 4
05 5 ~~~·------------------------~-----------, - 10 K e,--------=~--------~!::::=:::::J.:--------'Cj

6
7 06 ~:. 1'1-'-7 ------------------------1--------., ,I\

6
A Ill B < R 114

07 PB7 f'1~6------------------------i-----, Cl04 5: 7 < IOK
,-----2 At fll'7 ~ .001 -::- ~~~ -::- 1 ,---------~~==l---------~· u :~ ~ :::"173+----------------------i--, ,/\ 2 AIII C ~ ~<t
~ A3 oo CI05 ~ _ 3
f------2 A4 ~<i PA4 1'1::;2-+--------------~ .001 ~ ~bOK6 •.--------=-=----------~::::=::::;l;,..---------'6=-j ~
!-------! A5 Q N 4 .(~

~//////////////////////////~ i----=(A7) 3406 A6 ou ~ PA3 ~ f-- Alii D > Rl16 ~
'l"//////////////////////////h - ClOG .:i: 3 '(> IOK

-~+5V ~ : 1 ,.. 2 ~1~0-+--+--., .001 _ RI 07 ~ ll,-----------<._-----;i-----------!17 ~
Rl52< Rl53 ~ Cs2 ~ - IOK 9 AlliE > -'
3K < 3K PAl l-'-·+-+--+---, Cl07 I . v 10 (Rll7 <1.

(ABI .001 RIOB ,.----------=-----------~=IO=K=:!----------"1" ~
~------~~--4~--------~~~R/W

~------~~--l--4>--------"3-'-19
02

~------~~--l-4~------~3~~ ~

(A71 •••i-!."-+--+---4---, _ e [----- a.

I?J
6

A lOBE < RIIB

CIOS f
.001 -

1 < IOK

"'r----------+---------------~15

I

VREF

' 4

CII9Ir
.001

AIOSB

~ I
CRI08 2

~
~

I .BK

Rl37
- 4 .7K

iRIAL INTERFACE NO. 3

~I'CI25 ~I'CI26
lOOP .001

VREF

• •
I + 4

Al050

Rl30
10

-e +IO

Rl31 >
4.7K?

~I CI24
lOOP

~oeo1 4
I .3 ,_

CRI06 12

~ IBK

Rl32 "­
~ 4.7K ';'>

I SERIAL INTERFACE NO. 2

850 Interface Module Schematic Diagram

91

hiiCI23
.001

Jl03

CI09 .i.
.001 -

CliO j:
.001 -

Clll .:i:.
.001-

AIIOD

11I'CII4 ~I'CII3 ~I 'CII2
lOOP .001 .001

AIIOE

AI IOC
10

11:I CII5
lOOP

,.1 .. 1 • •<: 31v"EF.! ~J-- v •<• 7AI07~ 3AI07~
A1 05C ~ A1 0 58

1J AI05A
1J 1\ ~

14 ' • ~
6

~
2

,-< Rl72

~ ~

3 I 7

_ Rl2] - 4 .7K

6

SERI AL INTERFACE NO . I

Rl l9
IOK

13

~R I71
iiOK

·tv'"

~RI 21
i_ioK

~I CII6
.001

AI07C

~ ·
~4

Rl27 ~
~ 4.7K '

hi CII7
.001

Al070 n,.
CRI0 4 12

~

Rl28 >
~41K?

Jl02 1

L---~
0
z
~

DATA
P .U.

DATA
BIT II

DATA
BIT I

DATA
BIT 2

DATA
BIT 3

DATA
BIT4

DATA
BIT5

DATA
BIT6

DATA
BIT 1

BUSY

FAULT

SIG
GNO

~I CII S
001

me. """""' e;o "" """ I
NUMBER T$016610-00

RI"V _____.1__ SIIEET ~ of _ _l_

V REF

TTY PRINTER TTY KYBD CONTACTS

THE DASHED LINES REPRESENT THE CONNECTIONS
REQUIRED TO OPERATE A 20MA CURRENT LOOP
INTERFACE SUCH AS A TELETYPE .

JI04

Figure C- 6 AT ARt 850 Interface Modu

Appendix C 91

ATARI 850
INTERFACE
MODULE

APPENDIX D

TROUBLESHOOTING

The troubleshooting hints listed here are more extensive than those found in the
ATARI 850 Owner 's Manual.

If you have trouble communicating with a device, check the cable connections
first. If you are using the ATARI BASIC Computer Language, try using GET and PUT
instead of INPUT and PRINT; sending characters one at a time can give you useful
clues to problems. Reread the instructions for the device you are trying to use. If
you have a terminal , try plugging it into simulate your device.

SYMPTOM

No data sent

Wrong data sent

No data received

Wrong data received

Characters missing
from received data

POSSIBLE CAUSES

Loose cable
Selection of wrong port
Short circuit or open connection
Wrong Baud rate
Wrong translation or parity
Control lines incorrectly set (not ready)
Incorrect control line sense (setting control ON

when OFF required, etc.)

Any of the above

.Any of the above
Failure to start Concurrent 1/0
Data arrived during period Concu rrent 1/0 not

active
Incorrect handshaking to ensure that the data is

received only when ready

Any of above reasons
Framing error - started reading during arriving

character

Any of above reasons
Buffer overrun- failure to retrieve data from buffer

faster than it arrives

Appendix 0 93

ATARI 830
ACOUSTIC
MODEM

94 Appendix 0

System stops when
INPUT is tried

System behaves
sluggishly when
program is no
longer running

System dies

No data - see above
No EOF: data contains no EOF or translation mode is

incorrect (CR not becoming EOF)

Concurrent input still active - be sure to ter­
minate (close IOCB)

Failure to terminate Concurrent 1/0 before doing
other serial 1/0

Editing BASIC program or executing BASIC
statements in immediate mode while Concur­
rent 1/0 active - remember to close IOCB

If you have problems, the most likely reason is the phone line. Noise on the line or
a weak phone line signal can often result in lost or invalid data. Try to redial the call
to ensure that the connection is noise-free and there is no interference.

The AT ARI 830 Acoustic Modem has a test mode to verify that the modem is work­
ing properly. The test mode switches the transmitter frequencies to match the
receiver . All data into the modem will be looped back to the computer console for
verification. The test requires an isolated acoustic path between the speaker and
receiver of the telephone handset.

To test the originate mode, use the ATARI Telelink I cartridge or the special Test
Program shown below. Set the 0/A switch for Originate and the F/H switch to the
center position (TEST). If there is no tone, the unit is defective. Dial a single digit on
the telephone to get a quiet line, then immediately place the handset into the
acoustic muffs. Wait for the READY light and then type a message on the keyboard.
The TEST function will display the message. Check the television screen for errors.

After the originate test, quickly push the 0 /A switch to A with the telephone still
connected to the modem. Wait for the READY light and repeat the test.

Note: A quiet line is required to prevent dial tone interference. By dialing one
digit, you may only get a quiet line for 30 seconds. You may have to repeat the pro­
cess. A longer quiet time can be obtained by calling a friend . The mouthpiece of
the friend 's phone must be covered or removed to prevent room noise in­
terference .

If communication still cannot be established and the modem checks out in the
TEST mode, see tables below for other possible causes for failure.

MODEM TEST
PROGRAM

Here is a simple program for testing your ATARI 830 Acoustic Modem . This pro­
gram simply reads a key from the computer console keyboard , sends it to the
modem, then reads it back from the modem and displays on the television screen.

This test may be used to check a port of the interface module by looping a wire bet­
ween the XMT and RCV lines of the SERIAL INTERFACE port.

Caution: Using a wire too large in diameter can damage the SERIAL INTERFACE
port con nectar.

To terminate the program, press the INtifMI$@1 key.

10 OPEN #1 ,4,0," K:"

20 OPEN #2, 13,0,"R1 :"

30 XIO 38,#2,32,0," R1 :"

40 XIO 40,#2,0,0," R1 :"

50 FOR ETERNITY= 0 TO 0 STEP 0

60 GET #1 , KEY:REM from keyboard

70 PUT #2,KEY:REM to modem

80 GET #2,KEY:REM back from modem

90 PRINT CHR$(KEY); :REM to television

100 NEXT ETERNITY

SYMPTOM

Ready Light Off:

POSSIBLE CAUSES

Is modem power ON?

Is handset in proper position? Label Indicates direc­
tion of cord.

Are mode switches set properly?

• When communicating with a time share com­
puter, the modem should be set to ORIG
mode. Modem at remote computer end will be
in answer mode.

• When commmunicating with another terminal,
mode selection is determined by prior agree­
ment between users. Remember one modem
must be in answer mode, the other in originate
mode.

Appendix 0 95

96 Appendix 0

Double Character
Display:

Garbled Display:

Is Modem in half-duplex mode?

1. If remote computer echoes all characters the
modem should be in full-duplex mode.

2. If communication system is half-duplex (no
echo), the modem should be in half-duplex.

Is telephone handset fully seated in the rubber muffs?

Is Baud rate correct? Both local and remote terminals
must send data at the same Baud rate (300 Baud or
less).

Is received signal too weak or noisy? Pick up handset
and listen for a clean tone (if remote modem is in
answer mode) . If additional tones, dialing pulses,
static noise or voices are present, data may be
garbled. Re-dial call.

RS-232-C SERIAL
INTERFACE
PORT

APPENDIX E

ERROR CONDITIONS, CAUSES,
AND CORRECTIONS

This section contai ns descriptions of the errors you might encounter while using
the interface module. Many of these errors also occu r with other ATARI
peripherals; they are li sted here so you can see what they mean w hen using the in­
terface module.

There are a num_ber of new errors that you can get from the interface module but
which no other peripherals will produce. These new error codes are listed in
boldface type.

"ERROR" 1 Success. This is the status which successful completion of an 1/0
operation produces. BASIC does not report this to you except by
contin uing in normal fashion.

ERROR 128 Break abort. This means you pressed the EJi1D1 key while 1/0 was
proceeding.

ERROR 129 IOCB already OPEN. Your choice of IOCB number (#n) was that of
an IOCB that was already OPEN. This can happen if you restart a
program in a manner other than RUN (RUN closes files). Be careful
not to put your OPEN statement inside a programmed loop. These­
cond time OPEN is encountered it will produce ERROR 129.

ERROR 130 Nonexistent device. You specified something other than R:, R1 :,
R2: , R3: , or R4 : . Perhaps you were trying to access a file on disk
whose name starts with " R" and forgot the D: . THIS ERROR WILL
OCCUR IF YOU ATTEMPT TO USE AN RS-232-C SERIAL INTER­
FACE PORT AND THE RS-232-C HANDLER HAS NOT BEEN
BOOTED WHEN THE SYSTEM WAS TURNED ON. In that case, you
should save your program and start a new session, allowing the RS-
232-C SERIAL INTERFACE handler to boot .

ERROR 131 Write only. You tri ed to read (GET, INPUT) from a port you opened
as write only.

ERROR 132 Invalid command. You specified something incorrectly in an XIO
command to the interface module.

ERROR 133 IOCB not OPEN . You neglected to OPEN the IOCB to the 1/0
device you are trying to access.

ERROR 135 Read only. You tried to write (PUT, PRINT) to a port you opened for
read access only.

ERROR 138 Device timeout. The interface module did not respond to a com­
mand. Check the cables. Make sure the interface module is turned
on.

Appendix E 97

98 Appendix E

ERROR 139 NAK. The interface module refused to perform some command .
You may issue a STATUS request to find out what was wrong. Most
common causes are: attempts to perform 5-, 6-, or 7-bit input at too
high a Baud rate; automatic readiness checking was enabled and
the connected device was not ready.

ERROR 150 Port already OPEN . You attempted to OPEN a RS-232-C SERIAL IN­
TERFACE port but it was already OPEN through another IOCB. You
can access a RS-232-C SERIAL INTERFACE port through only one
IOCB at a time .

ERROR 151 Concurrent Mode 1/0 not enabled. You attempted to start Concur­
rent Mode 1/0 (XIO 40) but the port was not opened with an odd
number specified for Auxl (Auxl bit 0 not set) .

ERROR 152 Illegal User-supplied buffer. In the START CONCURRENT MODE
1/0 command with the user-supplied buffer, the buffer address
and/or the buffer length were inconsistent.

ERROR 153 Active Concurrent Mode 1/0 error. You attempted to perform 1/0 to
a RS-232-C SERIAL INTERFACE port while Concurrent Mode 1/0
was active to some other RS-232-C SERIAL INTERFACE port. Only
input, output, CLOSE and STATUS commands to the active Concur­
rent Mode port are allowed while Concurrent Mode 1/0 is active.
This error message is not always produced - attempting to do
disallowed 1/0 while Concurrent Mode 1/0 is active may result in
the computer "hanging up."

ERROR 154 Concurrent Mode 1/0 not active. Concurrent Mode 1/0 must be
activated in order to perform input (GET, INPUT).

CAUTION

If a program is using Concurrent Mode input, always make sure the Concurrent
Mode operation is stopped before your program stops. If files are not specifically
closed , BASIC will close them when it interprets END or comes to the end of the
program. All files are closed in the descending order of the IOCB number you have
assigned .

Failure to terminate Concurrent Mode 1/0 properly before attempting 1/0 to other
peripherals (or even other RS-232-C SERIAL INTERFACE ports) will probably result
in program failure. The only way to recover from such failure is to turn the com­
puter console off and then on again , which results in the loss of the information
stored in RAM.

Pressing on the computer console closes all open IOCBs and
reestablishes most of the 1/0 system' s registers and pointers. This method of closing
files results in the loss of data being held in input and output buffers. The interface
module may be "interrupted" by the and so transmit only part of the
character being sent at the time was pressed . Another possible effect
of is a short burst of random data to an active Concurrent Mode 1/0
RS-232-C SERIAL INTERFACE port.

PARALLEL
INTERFACE
(PRINTER) PORT

The Operating System has reserved IOCB #7 for LPRI NT and IOCB #6 for the
Graphics Modes. These two IOCBs are user programmable. However, problems
will occur if you have opened IOCB #7 and then use the LPRINT command, or
have IOCB #6 open and change Graphics Modes. For this reason , it is suggested
that IOCB #5 be used when configuring a RS-232-C SERIAL INTERFACE port and
IOCBs less than #5 for your program. Then , when your program end s, the RS-232-C
SERIAL INTERFACE port will automatically be closed before your program files.

Using any of the SOUND commands during Concurrent Mode 1/0 can have
disastrous effects, from changing the Baud rate to stopping 1/0 completely before
your data is transferred . If you must use SOUND commands, write your program
so that the IOCB you are using for Concurrent Mode 1/0 is closed before the
SOUND command.

This section describes error conditions that could occur when using the PARALLEL
INTERFACE (printer) port. There are no new error codes associated with the inter­
face module's printer port. However, the meaning of some of the errors is slightly
different between the interface module and other ATARI Printers .

If an error occurs that is not listed here, consult the ATARI BASIC Reference
Manual. Errors are listed here only if they have some new meaning when reported
by the interface module.

ERROR 138 Timeout. The interface module did not respond to a request from
the computer. Check the cables. Make sure the interface module
and attached printer are turned on. The interface module will not
respond to printer control commands from the computer if the
FAULT wire to the printer is low (caused by loose cable or printer
off).

ERROR 139 NAK. The interface module refused an illegal printer command.
Make sure that Aux1 and Aux2 are specified as zero (0) in your
OPEN command for t~ter. This error also occurs when the
printer appears active (FAULT line is high) but the printer fails tore­
spond to characters sent to it within 30 seconds. Check the switches
on the printer. Is it online? If the printer is not performing within 30
seconds, change your PRINT statements to break down transmis­
sions into smaller chunks.

Use of multiple printer control codes that involve carriage motion (with the excep­
tion of end-of-line), can cause an ERROR 139 (Device NAK). Carriage motion in­
cludes backspace, forward and reverse linefeeds, and partial linefeeds.

The ATARI 850 Interface Module sends data to the printer in 40-character blocks. If
there is more than one carriage motion in each block, the printer may not recover
in time to receive the next 40-character block .

If you should have this problem, check your program. Try to arrange your printer
control codes in such a way that there is no more than one carriage motion in each
40-character block. This can be done by preceding each carriage motion with forty
" null" characters. Null characters can be generated with control comma (flml ,)
or with the BASIC command CHR$(0).

Appendix E 99

100 Appendix E

Note: Attempts to operate more than one printer at a time will result in unpre­
dictable operation. While one printer may "win" most of the time, errors are
always possible, and exactly which error occurs is a matter of chance. If you have
more than one AT ARI Printer attached to your computer, turn on only one at a
time.

APPENDIX F

PRODUCT SPECIFICATIONS

A TA RI 850 Interface Module

• SIZE
9 5/8 x 6 5/8 x 2 inches

• TEMPERATURE
Operating envi ronment: 50 to 110 degrees Fahrenheit. (10 to 43 degrees
Centigrade)

Storage: 40 to 160 degrees Fahrenheit. (40 to 71 degrees Centigrade)

• ELECTRI CAL REQU IREMENTS
Uses 117 VAC (17 watts) with power adapter
10-VAC/1.5-A supplied by UL listed transformer with 10-foot cord

• HUMIDITY
Operat ing envi ronment: 20 percent to 80 percent relative humidity (no con­
densation).

Storage: 5 percent to 95 percent (no condensation).

• CONTROLS
ON/OFF switch with red POWER ON indicator lamp.

• DATA INTERFACE
Four serial interface ports for use with the ATARI 830 Acoustic Modem and
other EIA RS-232-C compatible peripherals. All have Send and Receive data
signals and signal ground. Port 1 has five additional control signals. 20-mA
current loop is connectible on Port 4 for teletype.

Centronics-type 8-bit parallel output interface port for use with the ATARI 825
Printer.

AT ARI 830 Modem

• SIZE
10.2 x 4.7 x 2.3 inches

• WEIGHT
1.5 lb.

Appendix F 101

102 Appendix F

• TEMPERATURE
Operating environment: 32 to 122 degrees Fahrenheit. (0 to 50 degrees
Centigrade)

Storage: -40 to 140 degrees Fahrenheit. (-40 to 60 degrees Centigrade)

• ELECTRICAL REQUIREMENTS
Uses 117 VAC (4 watts) with power adapter
24 VAC/150mA supplied by UL-Iisted wall-mount transformer with 6-foot
cord.

• HUMIDITY
Operating environment: 10 percent to 90 percent relative humidity (no con­
densation).

Storage: 5 percent to 95 percent (no condensation).

• TRANSMITTER FREQUENCIES
Originate:

Mark: 1270 Hz
Space: 1070 Hz

Answer:
Mark:

Space:
2225 Hz
2025 Hz

• RECEIVE FREQUENCIES
Originate:

Mark: 2225 Hz
Space: 2025 Hz

Answer:
Mark: 1270 Hz

Space: 1070 Hz

• TRANSMIT/RECEIVE RATE
300 Baud (Max.)

• RECEIVE SENSITIVITY
-45 dBm

• CONTROLS
FULL/TEST/HALF

FULL:
TEST:

HALF:

Sets Full-Duplex operation.
Sets up audio self-test mode.
Sets Half-Duplex operation.

• ANS/OFF/ORIG

ANS:
OFF:

ORIG:

Sets answer mode.
Turns unit power off.
Sets originate mode.

• INDICATORS
POWER: Red indicates ON.
READY: Ready to communicate when ON.

• DATA INTERFACE
The modem provides an RS-232-C interface via a standard 25-pin female
D-connector. The table below lists the signals used by the modem.

OUTPUTS:

INPUTS:

Mark(OFF) : -8V
Space(ON): + lOV

Mark(OFF) : -3 to -25V
Space(ON) : + 3 to + 25V

Table F-7 Pin Connections

PIN SIGNAL FUNCTION SIGNAL
NUMBER MNEMONICS DIRECTION

2 XMT Transmit Data Input to modem

3 RCV Receive Data Output to interface module

5 CTS Clear to Send Output to interface module
(On with
Carrier Detect)

6 DSR Data Set Ready Output to interface module
(ON with
Carrier Detect)

7 Signal Ground Common

8 CRX Carrier Detect Output to interface module

Appendix F 103

A

ASCII 5, 21, 25-28, 33, 38, 53, 64, 65, 70,
71-75

ATASCI I 25-27, 33, 38, 53, 69, 71-78
Autoboot (see Boot)
AUTORUN. SYS 13

B

BASIC 7-11
BASIC Commands 31-35

ASC 28
BYE 41
CHR$ 70
CLOSE 19, 31 , 37, 41 , 45 , 67, 69, 70
DOS 41
END 32, 41
FOR/NEXT 54
ENTER 35, 41 , 50
GET 9 , 10, 18, 19, 22, 26, 28, 31 , 33, 34,

37, 38, 45, 46, 50, 68
GOSUB 53
GOTO 10, 54
IF/THEN 9, 10
INPUT 7, 9, 18, 19, 22 , 26, 28, 31 , 33, 34,

37, 38, 45 , 46, 50, 60, 68
LIST 31 , 35 , 50, 69
LOAD 35, 50
LPRINT 15, 32, 41 , 70
NEW 41
OPEN 10, 22 , 31 , 50, 67, 69, 70
PEEK 10, 40, 43, 44, 47
PRINT 7, 16, 18, 19, 31 , 33 , 50, 58, 59, 68,

69, 70
PUT 9-11 , 16, 18, 19, 31 , 33, 50, 59,

68, 69
RUN 41
SAVE 31 , 35 , 50
SOUND 19
STATUS 9, 10, 19, 22 , 23 , 34, 37,

43-48, 53, 69
TRAP 22, 40
USR 39, 40

BASIC PROGRAMS 7-11 , 2, 39, 40,
49-61

Baud, Baud Rate 15, 16, 18, 21 , 22 , 34, 35, 37,
38, 53 , 60, 64, 69, 81

Baudot 21 , 53 , 6~ 79
Block Output Mode 16-19, 22, 31 , 34, 68, 69
Bootstrap 13, 19
BREAK Signal 29, 65

INDEX

c
Carrier Detect (see CRX)
Carriage Return (see CR)
Central i/0 (see CIO)
CIO (Central 1/0) 39
CompuServe Information Service 11
Configure Baud Rate 16, 18, 21, 46, 47 , 67
Configure Translation and Parity 25-28,

75
Configure Translation Mode 16, 28, 67
Clear to Send (see CTS)
Concurrent Mode 1/0 7, 8, 10, 16-23, 28, 29,

31-34, 37, 38, 41 ' 43-47, 67-69
CR (Carriage Return) 15-17, 45, 26, 28, 33,

38, 58-60, 70, 71
CRX (Signa l/Carrier Detect) 4, 5, 15-18, 21-23 ,

43, 44, 47, 48, 64, 67, 81
CTS (Clear to Send) 4, 5, 15-18, 21-23 , 43,

44, 47, 48, 64, 67, 8 1

D

Data Communication Link 4
Data Set 3, 63
Data Set Ready (see DSR)
Data Terminal 3
Data Terminal Ready (see DTR)
Disk Operating System (see DOS)
DOS (Disk Operating System) 13
DSR (Data Set Ready) 4, 5, 15, 16, 18, 21-23 ,

43, 44, 47, 48, 58, 59, 63-65, 67, 81
DTR (Data Terminal Ready) 4, 5, 15-18, 29,

30, 63-65, 84

E

End of Line (see EOL)
EOL (End of Line) 8, 9, 22, 26, 27, 33, 38, 69,

70

F

Force Short Block 17, 54, 59, 68
Full Duplex 3, 5, 6, 8, 18, 22, 31 , 33, 34,

40, 49

Index 105

106 Index

H

Half Duplex 3, 6, 18, 22, 69
Handshake, handshaking 3, 6

IOCB 10, 17, 19-21, 23 , 28-33, 38-43 , 45 ,
69, 70, 81, 85

IOCB (defined) 15, 81

L

Line Feed (see LF)
LF (Line Feed) 15-17, 25-28, 54, 58-60, 70,

71

M

Mark 21, 29, 63-65, 67, 79

N

NAK (Not Acknowledge) 46, 58, 68

0

Operating System (see OS)
OS (Operating System) 9, 10, 13, 34, 67

p

PARALLEL INTERFACE 67, 69
Parity 15, 16, 21 , 25, 27

R

RCV (Received Data) 4, 5, 18, 43 , 44, 47, 48,
64, 65 , 69

Received Data (see RCV)
Request to Send (see RTS)
RS-232-C 7, 9
RS-232-C defined 3-6, 63
RS-232-C Port 7-9, 13, 15, 16, 22 , 26
RS-232-C Handler 8, 13, 37, 38, 40, 67, 69
RTS (Request to Send) 4, 5, 16, 18, 29, 30, 63 ,

64, 84

s
Serial Interface Port (See RS-232-C Port) 13,

15-17, 22 , 29-32, 34, 35 , 39, 43-45, 53, 58,
63, 67, 68, 81 ' 87-92

Set Baud Rate (see Configure Baud Rate)
Set Translation Mode (see Configure Translation

Mode)
Signal Detect (see CRX)
Signal Ground 4, 5
THE SOURCE 11
Space 21, 29, 63-65 , 79
Start Bits 21 , 79
Start Concurrent Mode 18, 19, 33, 35 , 37-41 ,

46, 68, 85
Stop Bits 15, 16, 22, 45 , 64, 79
Status Request 34, 70
Symbolic Constants 10

T

TeleLink 6, 11 , 15, 19
Terminal 3
Translation 15, 16, 79
Transmit Off (see XOFF)
Transmit On (see XON)
Transmitted Data (see XMT)

X

XIO Commands 45 , 81-85
XIO 32 81
XIO 34 19, 30, 84
XI036 19, 21 , 81
XIO 38 19, 28, 83
XIO 40 10, 37, 38, 85
XMT (Transmitted Data) 4, 5, 18, 29, 30, 64,

65, 67, 68, 84, 85
XOFF (Transmit Oft) 6, 63
XON (Transmit On) 6, 63

