

ATARI® 850
INTERFACE MODULE
TECHNICAL MANUAL

A\

AARI

o A Warner Communications Company

Every effort has been made to ensure the accuracy of the product documentation in this manual. However, because Atari, Inc. is con-
stantly improving and updating the computer software and hardware, we are unable to guarantee the accuracy of the printed material after
the date of publication and disclaim liability for changes, errors or omissions.

No reproduction of this document or any portion of its contents is allowed without specific written permission of Atari, Inc.
Sunnyvale, CA 94086.

.

Important Information: Like any electrical appliance, this ATARI Home Computer equipment uses and produces radio frequency
energy. If it's not installed and used properly according to the instructions in this guide, the equipment may cause interference with your
radio and television reception.

It has been type tested and found to comply with the limits for a Class B computing device in accordance with the specifications in
Subpart J of Part 15 of the FCC rules. These rules are designed to provide reasonable protection against such interference when the equip-
ment is used in a residential setting. However, there is no guarantee that interference will not occur in a particular home or residence.

it you believe this equipment is causing interference with your television reception, try turning the equipment off and on. If the in-
terference problem stops when the equipment is turned off, then the equipment is probably causing the interference. With the equipment
turned on, you may be able to correct the problem by trying one or more of the following measures:

® Reorient the radio or television antenna.

® Reposition the equipment in relation to the radio or television set.

® Move the equipment away from the radio or television.

® Plug the equipment into a different wall outlet so the equipment and the radio or television are on different
branch circuits.

11 necessary, consult your ATARI Computer retailer or an experienced radio-television technician for additional suggestions.

PRINTED IN U.S.A. ©.1982, ATARI, INC. ALL RIGHTS RESERVED

HOW TO USE THIS MANUAL

Before reading this manual, you should be familiar with the ATARI" 850" Interface
Module Owners Manual. It tells you how to connect the ATARI 850 Interface
Module, the ATARI 830™ Acoustic Modem, and the ATARI 825™ 80-C: imn
Printer to your ATARI Home Computer.

While most of the information in this technical manual covers the use of the inter-
face module, you'll find some instructions here for operating the acoustic modem.
The modem cannot function without the interface module.

Sections 1 through 3 of the manual explain how the interface module works and
what it can do. The beginning user may want to study these sections after setting up’
and using the equipment. The advanced user should at least skim this material
before going on to Sections 4 through 13, which provide details on the many uses
of the interface module.

This manual describes how to use the ATARI 850 Interface Module only with ATARI
BASIC (often referred to in the text simply as BASIC). To carry out the operations
described, you must first insert an ATARI BASIC cartridge in the appropriate car-
tridge slot of your computer console.

How to Use This Manual 1

1

WHAT IS RS-232-C¢

RS-232-C is a technical standard of the Flectronic Industries Association (EIA).

Published in August of 1969, it is titlec stween Data Terminal Equip-
ment and Data Communication Equif ing Serial Binary Data Inter-
change.” The standard specifies elect aracteristics and names and
defines the functions of the signal and 1at make up a standard inter-

face called RS-232-C.

Figure 1-T shows, diagrammatically, the kind of hook-up that RS-232-C was de-
signed to standardize. A data terminal is at each end of the communication link.
The data terminal either generates or receives data (or does both). It could be a
keyboard/screen “‘terminal”’ in the normal sense of the word; it could be a com-
puter; etc. The idea is that the data terminal is at the end of the communication link
- hence it is called “‘terminal.”” However, the data terminal need not really be at
the end - you can think of *data terminal’* as just the name of one of the two ends
of a RS-232-C connection.

At the other end of a RS-232-C connection is the data set. In the example of Figure
1-1, each data set takes data from the data terminal it is connected to and
sends/receives the data over the communications link. The most familiar example
of a data set is the modem (such as the ATARI 830 Acoustic Modem), which takes
data from a terminal and converts it for sending and receiving over a telephone
line.

e ATARI Home Computer with the inter e module should be thought of as a
unit comprising a RS-232-C data terminal.

A full-duplex connection is one where data can be sent and received by both ends
of the RS-232-C connection simultaneously. In a half-duplex connection, data can-
not be sent by both ends at the same time. Therefore, one terminal must be able to
tell the other terminal, “‘I’'m through now; it’s your turn.”” The second terminal then
sends a signal saying, "‘OK, here | come.”” This exchange is called ‘“handshaking’’;
it is simply the sending and receiving of required signals to prepare each end of the
connection for the sending or receiving of data. Handshaking can be used in full-
duplex operation to tell the sending terminal to stop sending until the receiving ter-
minal can catch up.

What is RS-232-C? 3

Transmit (XMT) and receive (RCV), for any given device, is usually relative to that
device. That is, data goes out of a device on XMT and comes in on RCV. To connect
two RS-232-C devices when given the common names of the signals, you should
connect XMT to RCV (in one direction) and RCV to XMT (in the other direction). If
one of the devices is wired as a data set and the other as a data terminal, then you
should connect DTR to DTR, DSR to DSR, RTS to RTS, and so on. If, on the other
hand, they are each wired as data terminals, you should be careful how things are
connected.

The Signal Ground connection must always be made. RS-232-C requires that the
ground potential of the two devices be equal. That is, their grounds must be con-
nected together. Devices for which this requirement cannot be met cannot be con-
nected via a RS-232-C interface.

Data terminal ready (DTR) is used by RS-232-C to allow the terminal to signal its
readiness to send or receive data. This is a signal to automatic answering modems
that they have permission to answer the ringing of the telephone line.

Data set ready (DSR) is used by the data set to signal its readiness to send or receive
data. This indicates that communications are established.

Request to send (RTS) is used by the data terminal to tell the data set it wishes to
send data. Some modems (Bell 202 for example) require this line to switch
directions.

Clear to send (CTS) allows the data set to signal its readiness to pass data from the
data terminal.

The carrier detect (CRX) line allows the data set to tell the data terminal that the
communication link is established. This often differs little from DSR, except that
DSR usually refers to “‘telephone off the hook’” (answered), whereas CRX means
something like “/I hear the modem at the other end and we can talk now.” When
CRX goes OFF, data set ready OFF usually follows a few seconds later, indicating
that the other end has ““hung up.”

Innormal o ation, DTR, DSR, and CRX are all ON. For full-duplex operation RTS
and CTS are also both ON. However, it is often unnecessary to have all these lines
ON — either one or the other devices on the RS-232-C connection does not have
all the lines, or it is all right to ignore them (one of the properties of the RS-232-C
standard is that not all of it needs to be implemented — it's perfectly all right to
leave parts out). To operate the ATARI 830 Acoustic Modem, for instance, none of
the control lines need to be used. In fact, the ATARI 830 Acoustic Modem ignores
DTR and RTS, and it turns DSR, CTS, and CRX on and off together (with carrier).

Note that the communication link shown in Figure 1-1 is not defined by RS-232-C.
In particular, this link seldom has more than the ““equivalent’” of XMT and RCV —
that is, only data lines and no control. However, as often as not this link is a full-
duplex link, so data can go both ways simultaneously. ASCI! characters are the
most common data sent, so the data sent each way can be either ““control’’ data or
“data’’ data.

What is RS-232-C? 5

2

ATARI BASIC AND THE ATARI 850
INTERFACE MODULE

This section will show you an example of how the interface module is pro-
grammed. Using ATARI BASIC, two ATARI Home Computer Systems will be pro-
grammed to let one user talk to another user through ATARI 830 Acoustic Modems.

Let’s start simply — just a program to send a message line, then receive a line, and
so on. The main part of such a program might be:

100 INPUT MESSAGE$

110 PRINT #5; MESSAGES

120 INPUT #5, MESSAGE$

130 PRINT MESSAGE$

140 GOTO 100

Here, unit #5 is assumed to have been opened to the RS-232-C port attached to the
modem. Thus, line 100 gets a line from your keyboard, line 110 sends it to the
modem, line 120 gets a line from the modem, and 140 prints that on your television
screen.

Here's the whole program:

10 DIM MESSAGE$(120)
20 OPEN #5, 13, 0, “R1.”
30 X10 40, #5, 0, 0, "“R1:”
100 INPUT MESSAGE$
110 PRINT #5; MESSAGE$
120 INPUT #5, MESSAGES
130 PRINT MESSAGES
140 GOTO 100

Line 10 allows space for the variable MESSAGE$ (used to both send and receive).
We've assumed the modem is attached to port 1. Line 20 opens the RS-232-C port
1, allowing input and output, and enabling Concurrent Mode 1/O. Concurrent
Mode /O is required for input (see Sections 4, 5, 6, 9, and 10, and Appendix B for
more details about Concurrent Mode 1/O). Line 30 turns on the Concurrent Mode
I/0O. Once the Concurrent Mode 1/O is started, you may INPUT and/or PRINT at
any time to the concurrent RS-232-C port; but no other 1/O to any peripheral is
allowed until Concurrent Mode /O is stopped by closing the port. Input/output to
the keyboard and screen is allowed while RS-232-C Concurrent Mode 1/O is active,
and that is what we’re doing here, so there’s no problem.

BASIC and the ATARI 850 Interrace 7

IMPROVING
THE PROGRAM

You may find the limitation of one line at a time bothersome. Also, there is no way
to interrupt and get the talker’s attention when you're the listener. An improved
version of the program should allow either of you to talk at any time, and send
characters immediately as they're typed. This improved program is somewhat
more complicated than the simple program you’ve seen, and some background is
needed to understand it.

The basic idea is to use GET and PUT instead of INPUT and PRINT. GET and PUT
work with single characters (represented by the character’s numeric equivalent in-
side the computer), and characters are immediately available to BASIC without
having to wait for the # from the keyboard or EQL from the modem. (Note
that when you use GET, the = key produces the code for EOL, but this is not
the same as “‘ending the input line”” which is the meaning of ¢ when using
INPUT.)

GET shares a problem with INPUT: BASIC waits until all the input is available. Ad-
mittedly GET is only looking for one character but until it arrives, BASIC waits. So
suppose your copy of the program is executing the GET from the modem link to
your friend, and he hasn’t typed anything. This means you can’t type, because your
computer isn’t reading your keyboard!

The trick is to avoid actually doing the GET until you know a character is there. For-
tunately, there is a way to check for a character before GET, both for the keyboard
and for the concurrent RS-232-C port. Thus the ““flow’” of our improved program
will be like this:

100 IF no character from keyboard yet THEN 200
110 GET character from keyboard

120 PUT that character to the modem

200 get STATUS of the modem buffer

210 IF character not available THEN 100

220 GET character from modem

230 PUT that character to television screen

240 GOTO 100

The program continually alternates between checking for a character from the
keyboard and one from the modem, and in each case only gets and sends along a
character if one is ready.

{You may wonder how a character can become available even when BASIC has not
yet tried to GET it. The Operating System of the computer, using techniques of 'in-
terrupts’” and “‘buffering,”” accepts and saves the characters as they appear. Then,
when BASIC does the GET, the saved character is handed over to BASIC from the
Operating System. The keyboard has a one-character buffer, that is, only one
character is saved this way. If you press another key before BASIC receives the first
character, BASIC will find the second character you typed and the first is lost. The
default buffer for each RS-232-C port holds 32 characters; that is, BASIC can fall 31
characters behind before anything is lost. You can set up a buffer larger than 32 if
you need it — see Section 9 for more details.)

BASIC and the ATARI 850 Intertace 9

INTERFACE
MODULE
CAPABILITIES

This program can be used to ““talk’” with a computer other than another ATARI
Home Computer. If you get double characters when you are entering data into the
other computer, then delete PUT #3, KEY in line 110.

In effect, these two programs have changed your ATARI Home Computer into a
teletypewriter, using the modem and interface module. With the latter program,
you can access computer networks, such as THE SOURCE, AMERICA’S INFORMA-
TION UTILITY* and COMPUSERVE**. The program is not intended to replace the
TeleLink™ | cartridge, as it will print all the control characters to your television
screen and has no provision for using an ATARI Printer.

Both programs can be helpful in learning how to use, and get more out of, the
ATARI 850 Interface Module.

The interface module has many capabilities not mentioned in the above examples.
The rest of this manual contains information about the interface module and how
to take advantage of some of these capabilities. After you’ve read more about the
interface module, look at the Section 8 examples of how to use it.

* THE SOURCE and AMERICA’S INFORMATION UTILITY are service marks of Source Telecomputing Corporation, a
subsidiary of The Reader's Digest Association, Inc.

**COMPUSERVE INFORMATION SERVICE is a registered trademark of CompuServe, Inc., an H & R Block company.

BASIC and the ATARI 850 Interface 11

3

HOW THE INTERFACE MODULE
INTERACTS WITH THE SYSTEM

TURN-ON
OPERATION

WITHOUT A
DISK DRIVE

WITH A
DISK DRIVE

The Operating System (OS) of the ATARI Home Computer does not contain the in-
formation necessary to operate the interface module SERIAL INTERFACE ports or
the ATARI 810™ Disk Drive. This information comes from the peripheral itself.

The computer asks for the data when it is turned on. If the peripheral is turned on
before or at the same time as the computer, it will answer the computer’s request
and send the necessary information. This turn-on and initialization procedure is
called ““automatic bootstrap,” ““autoboot,”” or just “boot.” The term comes from
the expression “‘pulling yourself up by your bootstraps,”” indicating that you start
with nothing and reach your goal by your own efforts.

The bootstrap information contained in the interface module is called the RS-232-C
“handler.”” The disk drive information is called the Disk Operating System (DOS).

When the power is turned on to the computer console, the computer issues a disk
drive request. If there is no disk drive in the system (or if the disk drive is turned off),
the interface module will respond to the disk drive request. The computer then
loads the RS-232-C handler bootstrap program from the interface module, just as
though it were reading the program from a diskette. The bootstrap program is then
run, and it gets the RS-232-C handler from the interface module and relocates it in-
to the computer’'s RAM. The memory occupied by the bootstrap program is then
freed (but the handler remains).

If the disk drive is set for Drive 1, it will respond to the disk drive request when the
computer console is turned on. The interface module will not respond. A special
start-up program is loaded from the diskette and this program then loads the
handler from the interface module.

In the ATAR! 810 Master Diskette, CX8104, this job is handled by a file called
AUTORUN.SYS that is supplied with your DOS 11 Diskette. Read the instructions
supplied for details on AUTORUN.SYS.

Caution: The RS-232-C handler shares RAM space with a portion of the DOS
utilities. When DOS is called (by typing DOS and pressing & from BASIC),
DOS will overwrite the RS-232-C handler and destroy it. To protect against this, add
MEM.SAV to your diskette (item N on the DOS Command Menu). Then, when you
call DOS, the RS-232-C handler will be saved with your program.

Note: ATARI 810 Master Diskette, Model CX8101, does not contain the
AUTORUN.SYS file and cannot be used with the interface module RS-232-C
SERIAL INTERFACE ports.

How the Interface Module Interacts With the System 13

4

PROGRAMMING THE
SERIAL INTERFACE PORTS

INPUT/OUTPUT
CONTROL
BLOCK

ACCESSING
AN RS-232-C
DEVICE

As with any peripheral device attached to an ATARI 400™ or ATARI 800™ Home
Computer, the ATARI 850 Interface Module requires a program to tell it what to
do. This program may be pre-written or you may want to use the SERIAL INTER-
FACE ports from your own BASIC program. In the case of pre-written programs,
such as the ATARI TeleLink | cartridge, read the instructions for using that particular
program with the interface module.

Using software instructions to set the specific values for the parameters of the port
is called ““configuring the port.”” The configuration and use of the SERIAL INTER-
FACE ports on the ATARI 850 Interface Module can be complex. Many details must
be remembered and complicated procedures must be followed exactly. This sec-
tion gives an overview of the effects of commands and their relation to each other.

IOCB is an acronym for Input/Qutput Control Block. 1t is that portion of the com-
puter’s Operating System (OS) that controls the input and output of data within the
system.

An |IOCB allows the computer to keep track of the 1/O functions, both its own and
the user’s. Therefore, an IQOCB acts as an interface between the user and the com-
puter /O system.

From ATARI BASIC, the user has seven IOCBs available to use. These are
numbered 1 to 7. IOCB #7 is used by the OS for LPRINT and and IOCB #6 is used
for GRAPHICS MODE functions. These 10CBs should not be used with the inter-
face module if you have graphics or line printer commands in your BASIC program.
To be on the safe side, specify IOCB #5.

STEP 1 - CONFIGURE THE SERIAL INTERFACE PORT

The first thing to be done to access an RS-232-C device is to configure the SERIAL
INTERFACE port to which the device is connected by using instructions in your
program. In configuring the port you may set the following:

Baud rate — bits-per-second sent/received

Number of bits-per-word sent/received

Number of stop bits-per-word sent

Whether the incoming control signals DSR, CTS, and CRX are monitored

Whether input parity is checked

Whether output parity is set

Whether Line Feed is added after every Carriage Return sent

Translation of the word being sent or received (three types of translation)

e How the outgoing control signals DTR and RTS are used

These are shown as three groups, corresponding to the three configuration com-
mands; otherwise, the division into groups is arbitrary.

Programming the Serial Interface Ports 15

32-BYTE 32-BYTE

BLOCKS BUFFER

RS-232-C
COMPATIBLE
DEVICE

0 ¢ [(B[TE0 =R =3

INTERFACE MODULE PRINT OR PUT

Figure 4-1. Block Output Mode /0O

On occasion, you may want to force the sending of the information in the buffer.
For example, if you have specified the Append LF translate option, the LF will be
sent at a different time, later than the CR. You may want to send the LF immediately
if the external device is a terminal. As another example, if you are using the DTR,
CTS, or CRX monitoring feature to avoid sending more characters to a device than
it can handle, you can use the FORCE SHORT BLOCK operation to send your
characters one (or a few) at a time. That way you can ensure that the device won't

lose characters you send it because it became not ready in the middle of an output
block.

The FORCE SHORT BLOCK operation is only valid if you are using Block Output
Mode. If you are using Concurrent Mode, you cannot use this command.

If you issue a FORCE SHORT BLOCK command when the buffer is empty, no
action will be taken. Doing this is not an error. Since you can alternate output to
two SERIAL INTERFACE ports when using Block Output Mode, you can also alter-
nate FORCE SHORT BLOCK commands from one port to another. The ports must
be opened through different IOCBs, of course. The BASIC command for FORCE
SHORT BLOCK is listed in Appendix B.

Programming the Serial Interface Ports 17

5

SETTING THE BAUD,
WORD SIZE, STOP BITS,
AND READY CHECKING

Common convention and other standards have settled on a fairly universal serial
data transmission convention. When data is not being sent, the data line will sit idle
in the MARK state. A data character (sometimes called a transmission WORD) is
signalled by one START BIT, represented by the SPACE state. It is followed by the
data bits, each bit being represented by SPACE for O and MARK for 1. The word is
terminated by 1 (sometimes 2) STOP BIT(s), represented by the MARK state. The
next word can immediately follow with its start bit. If it does not, the line stays idle
in the MARK state. Effectively, the stop bit lasts indefinitely.

The most common transmission word size is 8 bits. When sending ASCII, which is a
7-bit code, the 8th bit usually represents the parity, is just setto 1 or 0, or is used as
a marker bit of some sort. ASCII is very rarely sent in 7-bit words. The interface
module supports 7-bit words for these cases and can also be used for communica-
tion with 7-bit or 6-bit codes such as BCD (with or without parity). Five-bit words
are also allowed so you can communicate with old Baudot code teletypes for
radioteletype and similar uses.

The receiver can receive all the bits in the word because it knows when each will
arrive. Each bit is the same duration as established by the Baud rate (bits-per-
second rate).

The CONFIGURE BAUD RATE command allows you to set the Baud rate, “‘word”’
size, number of stop bits to transmit, and enable or disable checking of DSR, CTS,
and CRX. The command may be issued through an open IOCB to the RS$-232-C
SERIAL INTERFACE port, or through an 10CB which isn’t being used. If you have
opened an IOCB to the port you are configuring, you must use that IOCB. You can-
not configure any port if a Concurrent Mode 1/O operation is active.

The CONFIGURE BAUD RATE command looks like this in BASIC:

XIO 36, #10CB, Aux1, Aux2, ““Rn:"”’

The 36 makes this a CONFICURE BAUD RATE command.

The #10OCB is the number of the IOCB that BASIC should use to execute the com-
mand. The IOCB should either be open to the port you are configuring, or should
not be open at all. No Concurrent Mode /O should be active when you issue this
command.

Aux1 is a number or expression that specifies the Baud rate, ““word’”’ size, and
number of stop bits to send with each ““word.”” For each of these, pick a number
from Tables B-1, B-2, and B-3 in Appendix B, and then add the numbers together to
form Aux1. You may add them yourself or you can let BASIC add them for you. For
example: XIO 36, #1, 10 +0 + 128, 0, “/R:”’ and XIO 36, 138, 0, “‘R:"’ both
specify the same thing.

Setting the Baud, Word Size, Stop Bits, and Ready Monitoring 21

Note that CTS and CRX are not supported on ports 2, 3, and 4, and that DSR is not
on port 4. The interface module behaves as if they are really there, however, and as
if they are always ready (ON).

You may look at the states of DSR, CTS, and CRX any time that Concurrent Mode
I/Ois not active (you must have an IOCB open to the port) by issuing a STATUS re-
quest for the port. Thus, enabling this automatic checking of these lines is not the
only option available to you, and you may prefer checking them directly with
STATUS. See Section 10 for details.

Setting the Baud, Word Size, Stop Bits, and Ready Monitoring 23

6

SETTING THE TRANSLATION
MODES AND PARITY HANDLING

The interface module handler can be configured to perform certain types of code
conversions (translations) and do parity generating and checking for you. These
two operations interact with each other. For this reason, they will be described
together in this section. The various options you may select for each are specified
by executing the same command — CONFIGURE TRANSLATION AND PARITY.

Three factors must be kept in mind when setting up code translations. Translation,
of course, is one of them, since it results in (possibly} changing one code into
another. Parity generation and checking also may result in changing one code into
another. The third factor to remember is the word size you are trans-
mitting/receiving. Inside the computer, all words are the same as bytes; that is, all
words are 8 bits. If you are sending/receiving 7-, 6-, or 5-bit words, these shorter
words have to come from 8-bit computer words by chopping out some bits, or
expanded into 8-bit computer words by adding some bits. These operations are
similar to changing one code into another.

Each of these three possible code changes takes place separately from the others,
one at a time. For output, translation comes first, followed by parity generation,
and finally truncation (shortening by leaving bits off). Of course, at each stage a
change may not occur, depending on what selection of options you have con-
figured and depending on which character (code) the computer is sending. For ex-
ample, if you have configured 8-bit words, the truncation operation does nothing.
For input, the order of code changing is expansion (from short words to 8-bit
words), followed by parity checking, and finally translation.

At each of the three stages, a code change may occur. If a change does occur, then
it is the changed code that will be operated on in the next stage. For example, (in a
particular configuration of translation and parity options) if you output an ATASCI|
EOL (End-of-Line), it would first be translated to an ASCII Carriage Return (CR) and
then parity would be generated for the CR. The parity step operates on the result of
the translation step, in this case the CR.

Note: ASCllis an acronym for the American Standard Code for Information Inter-

change. In ASCII, each letter (both upper- and lowercase), numeric code, and con-
trol key has a number assigned to it. In order for the ATARI Home Computer to
display its spectacular screen graphics, the ATARI Computer engineers devised a
modified version of ASCII, which is called ATASCII. In ATASCI!, the codes used for
certain ASCII control characters have been assigned to ATARI Computer graphics
characters. Appendix A contains a conversion chart.

There is one other translation option which is very specific; namely, the option to
have an ASCII Line Feed (LF) sent after each transmitted CR. This code change oc-
curs at the translation step. Consequently, the generated LF will go through the
parity and truncation (small word) phases just like the CR.

Setting the Translation Modes and Parity Handling 25

PARITY

SHORT WORD
CONVERSION

On output, Heavy translation converts EOL to CR, and will output any character
whose ASCIl meaning is the same as it is in ATASCII. That is, characters whose
values range from 0 - 31 decimal (ASCII control values) or whose values are above
124 decimal (7C hex) will not be sent. Note that characters whose high bit is one
will be translated to nothing; that is, characters that would show on the television
screen as inverse video will not be sent in Heavy translation mode. Note also the
difference between input and output in the Heavy translation mode: untranslatable
characters in the input are converted to the Won't-Translate value, where un-
translatable output simply is not sent out.

The (optional) sending of LF after CR is produced in the translation step. If you
specify no translation, the option of adding LF to CR is not available. If you specify
Light translation, LF will follow EOL (which of course hecomes CR). Note that if you
send the 13-decimal code (CR), LF will be added to it (when the Append LF feature
is on). Each character in the CR/LF pair is independently sent through the parity and
word shortening steps on its way out. The preset default setting of the Append LF
feature is Off, that is, the default is to not append the LF. LF will be appended only if
translation is enabled. If NO TRANSLATION is set, LF will not be automatically ap-
pended to anything.

You may select input and output parity handling separately. Thus, you may choose
to send, for example, even parity while you ignore the parity of what you are
receiving. The parity is always the most significant bit of each 8-bit byte (bit number
7). Parity operation is not useful then, if you are working with 7-, 6-, or 5-bit words.

In the default parity condition, the parity bit of input or output is not altered.
However, the parity bit of outgoing messages may have been changed during the
translation step.

For output, you may select even parity, odd parity, set parity bit to 1, or no parity
change.

For input, your choices are “‘don’t touch,”” “check even,” “check odd,” and
““don’t check.” Fach of these last three options will clear the top bit to zero,
whether or not a parity check is made. If an input parity error is found, the
character will still be input as if it were all right; the parity error flag will be turned
on in the status bytes. See Sections 10 and 13 for details.

The third operation which affects your code translation is the short word conver-
sion (if you are using 8-bit words, this is a "‘no-effect’” operation). Short words sent
out are made from 8-bit computer characters by omitting the most significant bits.
That is, a 7-bit word is bits O - 6 of the character, a 6-bit word is bits 0 - 5, and a 5-bit
word is bits O - 4. Thus the parity, if generated, is lost. ASCll is a 7-bit code; you can
send ASCII in 7-bit form without parity (this is not common practice, though —
usually 8 bits are sent even if the 8th bit is not used for parity). With 6-bit and 5-bit
codes, you will not be using ASCHI, so you will have to concern yourself with the
codes you want to be sending. With these word sizes, you should turn translation
off so the translation performed by the interface module handler will not affect the
codes you are using.

Setting the Translation Modes and Parity Handling 27

7

CONTROLLING THE
OUTGOING LINES

DTR, RTS,
AND XMT

CONTROL
COMMAND

There are up to three outgoing RS-232-C signals on each of the RS-232-C SERIAL IN-
TERFACE ports of the ATARI 850 Interface Module: Data Terminal Ready (DTR),
Request to Send (RTS), and Data Transmit (XMT). Each of these lines can be turned
on or off with the CONTROL command.

Port 1 supports all three outputs. Ports 2 and 3 have DTR and XMT. Port 4 has only
XMT. You may use this command the same way with any port — it is not an error to
try to control a line that does not exist. Your attempt will simply have no effect.

You may control any or all of these lines on a single RS-232-C SERIAL INTERFACE
port with the CONTROL command (controlling lines on other ports requires one
CONTROL command for each port). The CONTROL command may be issued to a
port which is not OPEN through an IOCB by specifying any unopen {OCB number
in the CONTROL command. If the port has been opened through an IOCB, you
must use that IOCB in the CONTROL command. You may not issue a CONTROL
command if any Concurrent Mode 1/O is active.

Controlling XMT line has very limited use and few users will be concerned with it. If
you change XMT you are likely to interfere with the normal transmission of data. In
the serial communication world the only practical use of control of the XMT line is
to send a BREAK signal. The BREAK is simply a period of holding the XMT line out
of its normal resting state. Specifically, the normal resting state is called MARK,
which corresponds to the binary 1 state. A BREAK is a period of the state called
SPACE, which corresponds to binary 0. (Actually, since MARK and SPACE are the
only legal states of any RS-232-C SERIAL INTERFACE signal, all data consists of alter-
nating MARKS and SPACES.) What distinguishes BREAK from other uses of SPACE is
that a BREAK is a SPACE which is a lot longer in duration than the time that a
transmitted word would be. This is true because any transmitted word ALWAYS
has one or more MARK bits in it — in particular, each word ends with one or more
stop bits represented by MARK. Thus to send a BREAK, first issue a CONTROL com-
mand to set the XMT line to SPACE (0), then a little while later issue a control to set
it back to MARK (1).

The uses of the other lines will depend on your application. For some guidelines,
see Section 10.

The preset default state of the DTR and RTS lines is OFF. The preset default state of
the XMT line is MARK. Once you change any of them with the CONTROL command,
the new setting will remain until you either turn the computer off or issue another
CONTROL command to change things. The 3 key has no effect on these
lines.

Controlling the Outgoing Lines 29

8

BASIC /O COMMANDS

OPENING
A PORT

CLOSING
A PORT

The commands OPEN and CLOSE, and the /O commands GET, INPUT, PUT and
PRINT, LIST, SAVE described here should be familiar from using the BASIC
language.

You must open an IOCB (using the BASIC OPEN command) to a RS-232-C SERIAL
INTERFACE port before you can read from it, write to it, start Concurrent Mode 1/O
or read its status. You may configure a port without having opened it.

The OPEN command in BASIC is:

OPEN #IOCB, Aux1, Aux2, ‘‘Rn:"’

IOCB is the number of the IOCB that other BASIC commands for the opened port
must use. Any [OCB number (1 through 7) may be used. Do not use an IQOCB if
another file is already open through it.

Aux1 specifies the direction of the port:

e 5signifies that you are going to use the port for input only (Concurrent Mode
11O)
8 signifies that you are going to use the port for output only (Block Mode I/O)
9 signifies that you are going to use the port for output only (Concurrent
Mode 1/0)

* 13 signifies that you are going to use the port for input or output (Concurrent
Mode /O, full duplex)

Aux2 is not used in this command: make Aux2 zero.

Rn: is the RS-232-C SERIAL INTERFACE port being opened. n can be 1, 2, 3, or 4.
R: is interpreted as R1:. For a given port no more than one IOCB may be open at
one time.

Having opened and used a port, you may disconnect the IOCB by closing the port
with the BASIC command CLOSE, as follows:

CLOSE #10CB

IOCB is the IOCB number previously opened.

Basic I/O Commands 31

GET, INPUT, PUT, AND PRINT

The BASIC input statements are GET and INPUT. The BASIC output statements are
PUT and PRINT. Refer to the ATARI BASIC Reference Manual for details about these
statements. In this context, PRINT and INPUT must always include the proper
IOCB number. The formats are given here as a reminder.

Formats: GET #IOCB,var
INPUT #1OCB{;} {avar[,{avar}...]
{ }{svar}[,{svar}...]
PUT #lOCB,aexp
PRINT #1OCB{;}expl,exp...]

{,} Lexp...]}

avar — Arithmetic variable

exp — Any expression, whether a string expression or an arithmetic expression
svar — A string variable

var — Any string variable, string or arithmetic

(See the ATARI BASIC Reference Manual for details.)

INPUT and PRINT are line oriented. They process a ‘“line’’ of characters at a time.
A line ends with an ATASCII EOL character. The translation mode you set up (or the
one preset for you) can be used to translate the EOL character to an ASCIHl CR on
output, and CR to EOL on input. An EOL is required for INPUT — a BASIC INPUT
statement will not finish until an EOL is read in. If your input does not have EOL, or
if your translate mode will not produce it on input, you should not use INPUT, but
use GET instead.

Remember that if you place a comma or semicolon at the end of a PRINT com-
mand, EOL is not produced when the PRINT command is executed.

When you use a BASIC input statement, the input data must be in the proper form
for BASIC. For example, if you read into numeric variables, the input must consist
of digits with optional sign, decimal point, and exponent. Multiple input numbers
must be separated by commas or EOLs. For more details see the ATARI BASIC
Reference Manual.

GET and PUT are character-oriented. You can input or output only one character
at a time. This is much slower than INPUT and PRINT, but it gives you more control
over what you send and receive. You may alternate between the different types of
BASIC input statements, and between the output statements, to the same port if
necessary.

Concurrent Mode input, or Concurrent Mode (full-duplex) 1/O, is performed by
first opening the file for concurrent 1/0, executing a START CONCURRENT MODE
I/O operation, and then doing normal BASIC INPUT, GET, PRINT and PUT opera-
tions to that port. In CONCURRENT MODE I/O, after you have performed the
START CONCURRENT MODE /O command, 1/O is going on at the same time
BASIC is executing other commands for you. For example, if your RS-232-C com-
patible device is sending characters to the computer through the interface module,
after the START CONCURRENT MODE /O, those characters will be saved for your
program as they arrive into a holding buffer by the computer. If you subsequently
perform an INPUT statement to that port, the computer wili just look in that buffer
for the input data.

Basic I/0O Commands 33

9

STARTING CONCURRENT
MODE 1/O

Use the command START CONCURRENT I/O (XIO 40) to start Concurrent 1/O
Mode. This mode may be used for output and must be used for input or full duplex.
The port must be open before you can start Concurrent Mode 1/0O. Once Concur-
rent Mode 1/O is in effect, no other 1/O operations that use the computer I/O con-
nector can be performed. Input/output operation to another serial port, for
example, cannot be performed; I/O to the keyboard editor, the screen editor, and
the controller jacks can still be performed.

Operations that are allowed while Concurrent Mode 1/O is active are input and out-
put operations to the active port (GET, INPUT, PUT, PRINT), STATUS commands to
that port, and CLOSE commands to that port.

There are two different forms of the START CONCURRENT MODE /O command.
The main difference between them is that one specifies the use of a small input buf-
fer built into the interface module handler (in the computer), and the other allows
you to give your own buffer to the handler so it can be any size you wish. In
Assembly Language these two options are really just different forms of the same
command.

The form of the START CONCURRENT MODE I/O command which allows you to
specify your own 1/O buffer has two disadvantages. The command is complicated
to specify in this form, and the BASIC array you use as the buffer may be moved by
the BASIC interpreter. Once created, BASIC arrays are not moved while a program
is being run, but arrays are moved whenever you add or delete a BASIC statement,
even in the immediate mode.

The handler for the interface module is told of the location of the buffer only when
you start Concurrent Mode I/O. If BASIC is allowed to move the array, data will be
inserted in unpredictable locations. Ongoing concurrent input could wind up in
other arrays or variables or even in your BASIC program, possibly destroying it.
Therefore, if using user-program supplied buffers, it is imperative to close the Con-
current |/O when the program stops. See ““Closing a Port,”” Page 31.

None of these problems occur if you use the buffer which is built into the interface
module handler, since that buffer does not move. On the other hand, that buffer is
quite small (32 bytes) and this may not be adequate for all programs.

With any size input buffer you need to GET or INPUT the data from the buffer
before the buffer fills up with data that you have not yet read. Of course, if in the
long-range average you read the data out of the buffer more slowly than it is
arriving, you will eventually lose data anyway. If this is the case, you will either
have to put up with losing it (which is not all that bad in some cases — see program
example READING A DIGITIZER, Section 17), or you will have to figure out a way
to slow down the device that is sending the data to you (such as setting a lower
Baud rate). Even if your program processes the data fast enough in the long run, a
small buffer puts demands on your program to get data quickly and often.

Starting Concurrent Mode I/O 37

The BASIC interpreter can be quite slow relative to incoming data, if you want to
do some processing on each and every character that comes in. In that case, even
300 Baud would be fast for BASIC. On the other hand, the system is more than fast
enough to read in a line of data (terminated by CR) at 9600 Baud (960 cps) — as
long as there is enough time between lines for your program to do its processing. It
pays to read a whole line of input at a time (use INPUT wherever possible instead of
GET), and it’s really helpful if the inputting device will pause for you after each line.
Even if the inputting device will not pause, inputting a whole line at a time may buy
you the processing time you need. The best thing to do is try it.

Note: [n order to perform line-oriented input using the BASIC INPUT statement,
the input must either have an ATASCIl EOL at the end of each input line, or an
ASCIlI CR must terminate each line. In the latter case, you must configure the
translation mode of the interface module port to convert the CR into EOL. This is
discussed more fully in Section 6.

A large input buffer will be needed if you can read the data from the buffer only in
large, occasional bursts. For example, if you do not know how long it will take to
process a line of input because some lines require a lot of work, you will want to
allow lines to ““back up’’ in the input buffer. This will work fine as long as you do
not get too many of these ““slow’’ lines at once. You will probably have to deter-
mine the needed size of your input buffer by trial.

The number of characters that can come in every second depends on the Baud rate
— the higher the Baud rate the faster characters can arrive. Thirty characters may
arrive each second at 300 Baud; 480 may arrive in the same time at 4800 Baud. Of
course, if the sending device does not run at the maximum possible speed — if
there are “gaps’’ between characters anywhere — then the speed of the characters
will not be important. Thus the Baud rate controls the maximum data transfer rate,
but the actual or effective data transfer rate may be smaller.

What it amounts to is that your program in BASIC must INPUT data from the input
buffer faster than the interface module puts them there from your RS-232-C com-
patible device; that is, your BASIC program must read the data faster than your
device’s effective data transmission rate (on average). You can control that rate by
setting the Baud rate, and possibly there are other ways to control the transfer rate
(that depends on the device itself). Be prepared to experiment to find the best
mode of operation.

In BASIC, the START CONCURRENT MODE I/O operation which uses the built-in
input buffer looks like this:

X10 40, #10CB, 0, 0, “‘Rn:"’

Specify the appropriate open I0CB, and specify 1, 2, 3, or 4 for nin Rn:. The com-
puter assumes port 1 for R:. You must specify zero for both Aux1 and Aux2, since
this is the way the RS-232-C handler is told to use its own input buffer.

If you opened the port for output only, then only concurrent output is enabled. If
the port is open for input only, then only concurrent input is started. If the port was
opened for both, then Concurrent Mode input and output are started (full duplex).
See Section 4 for details on how these various modes operate.

38 Starting Concurrent Mode /O

In BASIC, the START CONCURRENT MODE I/O operation in which you supply the
input bufter for the handler is specified by a series of POKE statements followed by
calling the Central I/O (ClO) through a USR function. The POKE statements specify
the type of operation and specify the buffer address and length. Poke these values
into the IOCB corresponding to the IOCB you have opened for the RS-232-C
SERIAL INTERFACE port. Here is an example program:

10 DIM BUF$(500), RSTART$(7)
20 LET RSTARTS = “’hh
30 LET FILE = 2

40 OPEN #FILE, 13, 0, “'R4:”

50 LET IOCB = 163 FILE

60 LET BUF = ADR(BUF$)

65 LET BUFLEN = 499

70 LET RSTART = ADR(RSTARTS)

80 POKE 832+10CB+ 2, 40

90 POKE 832+ 10CB+4, BUF-(INT(BUF/256) % 256)

100 POKE 832+ 10OCB+ 5, INT(BUF/256)

110 POKE 832+ 10CB+8, BUFLEN-(INT(BUFLEN/256) * 256)
120 POKE 832+ 10CB+9, INT(BUFLEN/256)

125 POKE 832+ 10CB+ 10, 13

130 DUMMY = USR(RSTART,IOCB)

140 STARTSTATUS = PEEK(832+10CB+ 3)

":REM % and d are inverse video

In this program, a full-duplex file is opened through 1OCB #2 to RS-232-C SERIAL
INTERFACE port number 4 (the 13 in line 40 specifies full duplex). Lines 50 through
70 set up some values that are used by the START CONCURRENT MODE 1/O
operation. The buffer is set up in lines 80 through 130. Line 140 gets the status value
returned by the 1/O call. Each POKE statement puts some needed value into the
IOCB. The address to poke is specified as the sum of the following: the first address
of the I0OCBs (832), a value specifying which IOCB, and an “Offset’” into the IOCB
for the particular value you are poking. The value specifying the IOQCB is 16 times
the IOCB number through which you have opened the RS-232-C SERIAL INTER-
FACE port (in this case we set the variable IOCB to 32 in line 50, since the IOCB is
#2).

The values poked into the [OCB are: 40 into Offset 2; the buffer location (address)
into locations 4 and 5; the buffer length (minus one) into Offsets 8 and 9; and 13 in-
to Offset 10. Pay special attention to the fact that the buffer address and the buffer
length are both 2-hyte values, requiring two pokes to put them into the [OCB.
Those complex looking expressions in lines 90 through 120 are simply splitting the
address and length into their low-part and high-part so each part can be poked
individually.

Line 130 calls the I/O system through a USR function. This USR function has two
arguments: the address of the function, and the IOCB specifier (the same as was
used in specifying the poke locations). The address of this USR function was found
in line 70, so you see that the function is the character array called RSTARTS$. The
function itself is the odd-looking sequence of characters in line 20. Be sure to type
this character sequence carefully before you call this USR function - any mistakes
and your program will probably produce an unrecoverable failure.

Starting Concurrent Mode 1/O 39

BASIC commands that will automatically close all of the IOCBs are: RUN, END,
BYE, DOS, NEW, and ENTER. Allowing your program to “‘run off the end’" also
closes the IOCBs automatically.

If BASIC is allowed to close your IOCBs, it will close all open IOCBs according to
IOCB number in descending order. However, since a CLOSE operation to a file
usually involves serial port /O, it is not allowed during Concurrent /O (unless it is
to the Concurrent /O port itself). Therefore, since IOCB #7 is reserved for LPRINT
and 1OCB #6 is reserved for graphics, we strongly suggest that you use 10CB #5 for
your Concurrent I/O and IOCBs numbered less than 5 for your program files. In
that way Concurrent I/O will be closed before your files.

There are cases where your program may stop but the IOCBs will remain open.
These are I/O error, program error, pressing the +77#% key when enabled, and the
BASIC command STOP. The BASIC command CONT will not close any open
1OCBs.

If you have followed the above suggestion using IOCB #5 and wish to stop Concur-
rent Mode /O and close your files, you can enter the BASIC command END from
the immediate mode. If you have not followed the suggestion, you must close each
file individually with the BASIC command CLOSE (CLOSE #4, CLOSE #3, etc.). In
any case, the Concurrent I/O must be closed first.

Starting Concurrent Mode /O 41

10

THE STATUS COMMAND

USES OF
STATUS
COMMAND

The STATUS command is useful for determining many facts about an RS-232-C
SERIAL INTERFACE port and the state of the interface module. You can check for
certain specific error conditions to find out why certain errors have occurred, to
check parity, and so on. The STATUS command allows you to determine the
amount of data in the input and output buffers while Concurrent Mode I/O is in ef-
fect. STATUS also allows you to check the state of the RS-232-C control lines DSR,
CTS, CRX {(and the state of RCV at the time you issue the STATUS command).

The STATUS command may be issued only through an 10CB opened to a RS-232-C
SERIAL INTERFACE port. You may issue the command whether or not Concurrent
Mode 1/O is in effect. If this mode is in effect to a port, you cannot obtain status in-
formation (via the STATUS command) from any other port.

The information returned by a STATUS command is different according to whether
or not Concurrent Mode /O is in effect. When Concurrent Mode 1/O is in effect,
the STATUS command allows you to see how full your input and output buffers
are, but you cannot check on the state of the control lines DTR, CTS, CRX and RCV.
When Concurrent Mode 1/O is not in effect, you get no information about buffers,
but the state of the control lines can be checked. There are other minor differences
in the effect of the STATUS command in the two cases.

In BASIC, the STATUS REQUEST command is implemented as a ““compound”’
command — that is, you must code multiple BASIC statements to get the status.
The first is the STATUS command. This is followed by uses of the PEEK function to
retrieve status which is placed in a small status area by the STATUS command.

The STATUS command looks like this in BASIC:
STATUS #10CB, avar

Here, #IOCB specifies the IOCB (1-7) through which you have opened the RS-232-
C SERIAL INTERFACE port. You may issue this statement to the port before or after
Concurrent Mode 1/O is started.

Avar is a variable which will get the status of the STATUS statement itself. That is,
avar will be set to the input/output system’s one-byte status that is returned when
BASIC calls the I/O system. Since the I/O system call here is STATUS, the value
returned is the 1/O system’s determination about how the STATUS command went.
This number is the same kind of number returned to BASIC by the I/O system after
any /O call, but in the other BASIC I/O statements, BASIC looks at the number
itself to see if the I/O was completed without error. The STATUS command simply
puts the number in the avar. This status number can be interpreted just like one of
the ERROR codes — for example, you will get an ERROR 130 if you neglected to
OPEN the IOCB, since an unopen |OCB does not specify any peripheral device and
ERROR 130 means “Nonexistent Device Specified.”” The status number will be 1 if
the STATUS call was completed without error. The status number will be some er-
ror number greater than 127 if there was some problem with the STATUS call.

The Status Command 43

44 The Status Command

If the STATUS call is successful, up to four bytes of information are stored in loca-
tions 746, 747, 748, and 749 (decimal). Location 746 always contains error status
bits relating to the status history of the RS-232-C SERIAL INTERFACE port. The other
three locations will contain buffer use information if Concurrent Mode 1/O is active.
If Concurrent Mode I/O is not active, 747 contains status bits relating to DSR, CTS,
CRX, and RCV on the RS-232-C SERIAL INTERFACE port, and locations 748 and 749
hold nothing.

Table 10-1 shows the definition of the error bits in location 747. The table gives
each bit a decimal value which shows how that bit, if “‘on’”" or 1 (as opposed to
“off”” or 0), adds to the total value of the byte when interpreted as a decimal
number. The meaning of each of these error bits is discussed later in this section,
but first here is a BASIC example showing how you can check one of the bits:

160 STATUS -1, IGNORED
170 LET ERRORBITS = PEEK(746)/128

180 IF INT(ERRORBITS) < > INT(ERRORBITS+ 0.5) THEN PRINT
“OVERRUN!"

In statement 160 the STATUS call is made to a dummy variable IGNORED. We do
not use this variable, because we assume the STATUS call will work all right. The
STATUS call must be made in order to put a value into location 746.

Statement 170 peeks at location 746. This value is then divided by twice the
decimal number of the error bit being checked (this information is taken from
Table 10-1). This value becomes the variable ERRORBITS. If the bit being check is
0, then adding 0.5 will not increase the integer part of the number. If the bit is 1, the
integer part of the value changes when 0.5 is added.

In the above example, we are checking for the BYTE OVERRUN error. From the
table, we find this to be 64. PEEK(746) is divided by twice 64 (128).

Statement 180 makes the comparison. If there is an error, OVERRUN! will be
printed.

Table 10-1 Decimal Representation of the Error Bits in Location 746

Decimal Equivalent Error Error
128 Received data framing error
64 Received data byte overrun error
32 Received data parity error
16 Received data buffer overflow error
8 llegal option combination attempted
4 External device not fully ready flag
2 Error on block data transfer out
1 Error on command to interface module

46 The Status Command

RECEIVED DATA BUFFER OVERFLOW ERROR (bit 4, decimal value 16)

This error flag indicates that more data has arrived than can be held in the input
buffer — data has not been read from the buffer (INPUT, GET) soon enough. This
error is maintained by the computer, and it occurs when the overflowing character
arrives from the RS-232-C compatible device. The new character replaces the
oldest one in the buffer. This error bit is cleared by the STATUS command.

ILLEGAL OPTION COMBINATION ATTEMPTED (bit 3, decimal value 8)

This error flag is kept in the interface module and may be read by STATUS only if
Concurrent Mode I/O is not active. It is set by an attempt to start Concurrent Mode
input with short words (7-, 6-, or 5-bit) with the port open for both input and output
or output only (short words are allowed in only) or too high a Baud rate (short
words are allowed for input at a maximum rate of 300 Baud). This error may be
checked immediately after the interface module produces a NAK (Error 139, which
may be trapped) for the refused command. The bit is cleared by the STATUS re-
quest. Error bit zero (command error, decimal value 1) will always be set when this
bit is set.

EXTERNAL DEVICE NOT FULLY READY (bit 2, decimal value 4)

This bit is kept in the interface module and may be read by STATUS only when
Concurrent Mode /O is not active. It is set whenever a START CONCURRENT
MODE I/O or block output command is refused by the interface module because
one or more of the external status lines being monitored is not ON. Any of the
external status lines not being monitored (as set by the SET BAUD RATE command)
is ignored; if none is being monitored this bit will not be set and the 1/O operation
will proceed normally. Read this flag bit with a STATUS request immediately after
the interface module refuses the operation with Error 139, which can be trapped.
This flag is cleared by the STATUS command.

DATA BLOCK ERROR (bit 1, decimal value 2)

This error bit is maintained in the interface module and may be read by STATUS im-
mediately after a command is refused by Error 139, which can be trapped. In a
biock output, the data block was unsuccessfully received from the computer by the
interface module. This error should not occur in normal operation; it indicates pro-
blems in communication between the computer and interface module.

COMMAND ERROR TO INTERFACE MODULE (bit 0, decimal value 1)

This error bit is maintained in the interface module and may be read by STATUS im-
mediately after a command is refused by an Error 139 from the interface module.
This bit indicates that the interface module did not recognize a command sent to it
from the computer, or that the interface module is not configured properly to per-
form the command (see ILLEGAL OPTION COMBINATION ERROR).

BUFFER CHECKING

During active Concurrent Mode I/O, the STATUS command will return the number
of characters in the input buffer in locations 747 and 748, and the number of
characters in the output buffer in location 749. To find the number of characters in
the input buffer in ATARI BASIC:

LET BUFFERUSE = PEEK(747) + 256% PEEK(748)

If you only want to find out whether or not there are characters in the input buffer,
you do not need to multiply by 256:

[F PEEK(747)+ PEEK(748)=0 THEN input buffer empty...
or:
IF PEEK(747)+ PEEK(748) < > 0 THEN input buffer not empty...

If you are using the built-in buffer, or if your supplied buffer has fewer than 256
bytes, then location 748 will always be zero and you need to look only at location
747. The output buffer holds only 32 characters; location 749 will never exceed 32.

When Concurrent Mode 1/O is not active, location 747 will contain information
about the readiness lines (DSR, CTS, and CRX) and the data receive line (RCV) of
the specified port after a STATUS request. (Locations 748 and 749 will not contain
anything useful after a STATUS request when there is no active Concurrent 1/O.)
Location 747 will contain the sum of four numbers, shown in Table 10-2. The cur-
rent and past status of DSR, CTS, and CRX as well as the current status of RCV are
included. The past status of DSR, CTS, and CRX applies back to the time the inter-
face module was booted, or to the most recent STATUS command to the specified
port which was made while Concurrent Mode 1/O was not active (i.e., the last time
that DSR, CTS, and CRX were supplied to a STATUS request). No other operations
affect the past status of these lines, which is supplied by STATUS. In particular,
whether or not you enable readiness checking before I/O (in the SET BAUD RATE
command) will have no effect on the information supplied by STATUS.

Ports 2 and 3 will always show CTS and CRX as being ON. Port 4 will show CTS,
CRX, and DSR as being ON.

This is a quick way to check whether or not a port is ready:
STATUS #n, XXX IF PEEK(747) < 128 THEN not ready ...
or to check if it has stayed ready since the last check:
IF PEEK(747) > = 192 THEN always ready ...
In other words, the DSR status bits are the most significant bits in the sense byte,

and you can check them this way without having to worry about the states of the
other bits in the byte.

The Status Command 47

11

SAMPLE PROGRAMS

TRANSFERRING
BASIC SOURCE
PROGRAMS

This section describes a pair of programs that can be used to transfer information
from one ATARI 800 Home Computer to another over the telephone. These two
programs demonstrate an example of the technique called ““handshaking.”” Hand-
shaking, which was described in Section 1, is an overextended term in the com-
puter world. What is meant here is that the receiving program will respond to the
sender with an ““I've got it!"”” message when it has successfully received each line of
information from the sender.

The trick here is that the sending program must not miss the ““I've got it!”” message.
Likewise, the receiving program must not only have got the line when it says ““I've
got it,” but the receiver must be ready to receive the next line immediately
because, theoretically, the sender might send the next line immediately. These pro-
grams show how this is done.

Both programs operate on one line (up to 255 characters) at a time. Each program
starts by dimensioning its line array, and each asks its user for the filename to be
sent/received. Each program then opens its modem port (R1:) and disk file
(assuming the send/receive files are disk files).

The RECEIVE program must be started first, in order to be ready for the sender’s first
line. The SEND program will send the first line with no prior signal from the
RECEIVE program.

In line 540, the SEND program gets a line from the disk file. The program then
prints the line on the television screen (so you can watch the data being sent).
Then, in lines 570-590, the line is sent over the phone. Note that port R1: is opened
full duplex: SEND assumes when RECEIVE gets the line, that there might be an im-
mediate reply. (Of course, this can’t happen but it's best to write the program as
though it could.) In line 600, SEND waits for the reply (a line that is empty except
for an EQL is used as a reply).

The RECEIVE routine, meanwhile, has set itself up to get a line from the modem
(lines 280-290, 530). When line 530 completes (the line of data has been received),
RECEIVE closes the modem port (R1:) in order to save the data on the diskette (lines
540, 580) and echoes the data on the television screen (line 590). Then RECEIVE
opens the modem again and sends the reply (lines 610-630). Note that port R1: is
opened full duplex: RECEIVE assumes that it might start getting the next line im-
mediately after it has sent its reply. Note also that it is not necessary for RECEIVE to
INPUT the data immediately, but it is necessary that RECEIVE have started the Con-
current Mode data receive (line 620).

When SEND gets the reply, it knows it can safely close the modem port (R1:) to get
another line of data from its diskette (lines 600-610). It then goes back to get
another line of data (lines 530-540) and the whole cycle repeats. Note how the
SEND program checks for the end of the disk file and how it sends a specially en-
coded line (EOF EOF EOF) to the RECEIVE program to signal this. Also note that
both programs explicitly close their files.

Sample Programs 49

52

Sample Programs

RECEIVE PROGRAM

110 DIM INLINE$(255)

200 REM

200REM ==========

202 REM

210 LET TRANSLATE=32:REM Full ATASCII
220 XIO 38,#5,TRANSLATE,0,” R1:""
230 REM

240 PRINT “‘Receive file’s full name’’;
250 INPUT INLINES$

260 OPEN #2,8,0,INLINE$

270 REM

280 OPEN #5,13,0,/'R1:""

290 X1O 40,#5,0,0,'R1:"":REM Start 1/O
500 REM

501 REM = == == === = —

502 REM

510 FOR ETERNITY=0 TO 0 STEP O
520 REM

530 INPUT #5;INLINE$:REM Get line
540 CLOSE #5:REM Stop /O

550 REM

560 IF INLINE$ = “EOF EOF EOF"" THEN 900
570 REM

580 PRINT #2;INLINE$:REM Save line
590 PRINT INLINE$:REM Echo onscreen
600 REM

610 OPEN #5,13,0,"'R1:"

620 X1O 40,#5,0,0,”’R1:"":REM Start I/O
630 PRINT #5:REM Send reply

640 REM

650 NEXT ETERNITY

900 REM

901 REM === === === =

902 REM

910 CLOSE #2:REM EOF received

999 END

BAUDOT
TERMINAL
EMULATOR

Here is a sample program showing the use of odd character transmission sizes and
non-ATASCII (also non-ASCIl) character codes. This program turns your ATARI
Home Computer into a Baudot teletype emulator.

Warning: The ATARI 850 Interface Module was not designed for connection to old
teletype equipment. Such equipment used 60 milliamp current loops rather than
the more modern 20 milliamps. High voltages could be present in such old equip-
ment. These voltages could be dangerous to you and could damage your interface
module. This program is intended to allow you to communicate, via a modem,
over a telephone or radio link with someone owning a Baudot teletype.

The Baudot code is an old 5-bit serial code which is actually two codes in one. Half
of the characters in Baudot are in the LETTERS SHIFT category and half are in the
NUMBERS SHIFT category. The latter category includes digits 0 - 9 and some
special characters. This program takes care of sending and receiving the shifting
control characters.

This program is actually much simpler than it looks. In lines 110 - 210, the
program’s symbolic constants and starting values are set up. The symbolic constants
are values which are not changed in the program, but for readability they are
represented symbolically (as variables). Constants include: logical constants (YES
and NO); PEEK and POKE addresses (SWITCH, KB); character constants (RETURN,
FEED, UPSHIFT, DOWNSHIFT); BASIC line number constants for GOSUBs and
GOTOs (RECEIVE, SEND, and TESTSWITCH); and useful numbers (NOPUSH,
NOKEY). Setting INSHIFT to zero establishes LETTERS SHIFT for received data; set-
ting ALPHA to YES establishes LETTERS SHIFT for sent data; and setting TALK to NO
establishes LISTEN mode.

Lines 300 - 390 fill in the ASCII-Baudot translation tables from the data values in
lines 2000 - 2460. Remarks are interspersed in the data to show what character is
being translated. Notice that all the characters are represented within this program
as numbers — the number is the “‘internal’’ character code for the corresponding
letter (this is true for both ATASCIl and Baudot, but, of course, the numbers
representing a particular letter are different for each).

In order to make the code conversion easy, the translation mode is set to 32 — no
translation. The Baud rate is set to 45.5 Baud (60 wpmj). This is the most common
speed for old Baudot equipment.

Lines 500 - 650 are the receive routine. The computer informs you that you are
entering Listen Mode, then opens the RS-232-C SERIAL INTERFACE port R3: for in-
put and starts the Concurrent Mode input (510 - 540). The receive loop (560-650)
first does a GOSUB TESTSWITCH to check for switching to Send Mode
(TESTSWITCH is discussed later). The STATUS and IF PEEK... statements (580 -585)
see if there are any characters received. If there are, a character is input in line 590
and translated to ASCIin lines 600 - 630, and printed to the television screen in line
640. ATASCII table values less than zero mean untranslatable characters; 0 means
the LETTERS SHIFT character is received; T means NUMBERS SHIFT.

Sample Programs 53

54

Sample Programs

Lines 700 - 950 are the send routine. Talk mode is announced, and port R3: is
opened for output. The first send loop (750 - 950} action is a GOSUB TESTSWITCH.
Line 770 checks for the typing of a keyboard key. In lines 780 - 800 the key's value
is retrieved and its high bit is stripped (it is forced to be less than 128 — this has the
effect of disregarding inverse video and allows the conversion to table to require
only 128 elements). The key is translated in line 810; if it translated to zero, that
means it has no Baudot equivalent and line 820 restarts the loop. Otherwise, it is
echoed to the television screen (830); it then undergoes further translation in lines
840 - 890, where a LETTERS or NUMBERS shift character is added if needed. Line
900 sends the character itself, and if it was RETURN, lines 920 - 930 add a LINEFEED
and LETTERS SHIFT.

The TESTSWITCH routine (Imes 1000 - 1060) checks whether one of the yellow
buttons is pushed %). If not pushed, TESTSWITCH just
returns. Otherwise, the subroutlne waits for the button to be released, restores
BASIC's GOSUB/FOR-NEXT stack, flips from SEND to RECEIVE mode (or vice-
versa) and does a GOTO to the proper routine.

In operation, the 32-character internal buffer fills with characters to be sent. When
the buffer is full, the interface module sends the characters as a block. While the
characters are being sent, the keyboard will accept one character (which you
won’t see on the screen), so you should type the next character you want to send
and wait for it to appear on the television screen. Note that this program, as writ-
ten, sends the block immediately when you type & . You may want to experi-
ment with variations, such as sending each character as it is typed from the
keyboard (using the FORCE SHORT BLOCK) or reading a line at a time (this allows
you to use backspace to correct your typing, but the person at the other end of the
connection won’t see anything except when you type).

110 DIM ATASCI(64),BAUDOT(128)
120 REM

121 REM Set up constants...

122REM ———— - ——— ——-

130 LET YES=1:NO=0

140 LET SWITCH=53279:NOPUSH=7
150 LET KB=764:NOKEY =255

160 LET RETURN=8:FEED=2

170 LET UPSHIFT =27:DOWNSHIFT =31
180 LET RECEIVE=500:SEND=700

190 LET TESTSWITCH = 1000

200 REM

201 REM Starting values...

202 REM —— —— o —

210 LET INSHIFT=0:ALPHA=YES:TALK=NO
300 REM

301 REM Fill Baudot to ATASCII table...
302RIM —/— — i oo
310 FOR I1=1TO 64

56 Sample Programs

700 REM

701 REM Send routine...

JO2ZREIM ———— —— ——

710 PRINT:PRINT “‘Talk...”

720 REM

730 OPEN #5,8,0,R3:"":REM Output

740 REM

741 REM Send loop...

742 REIM ———————

750 FOR QUTLOOP=0TO Q0 STEPO

760 GOSUB TESTSWITCH

770 IF PEEK(KB)= NOKEY THEN NEXT OUTLOOP
780 GET #1,KEY

790 LET OUT=KEY

800 IF OUT> 127 THEN LET OUT =QUT -128
810 LET OUT=BAUDOTOUT+ 1)

820 IF OUT=0 THEN NEXT OUTLOOP

830 PRINT CHR$(KEY);

840 IF ALPHA THEN 880

850 IF OUT <0 THEN 900

860 LET ALPHA=YES:PUT #5,DOWNSHIFT

870 GO TO 900

880 IF OUT >0 THEN 900

890 LET ALPHA=NO:PUT #5,UPSHIFT

900 PUT #5,ABS(OUT)

910 IF OUT < > RETURN THEN NEXT OUTLOOP
920 PUT #5,FEED:PUT #5,DOWNSHIFT

930 XIO 32,#5,0,0,R3:"

940 LET ALPHA=YES

950 NEXT OUTLOOP

1000 REM

1001 REM Listen/Talk switch test...

10002REM —— —— i oo

1010 [F PEEK(SWITCH) = NOPUSH THEN RETURN
1020 IF PEEK(SWITCH) < > NOPUSH THEN 1020
1030 POP:POP:REM Pop GOSUB & FOR-loop
1040 CLOSE #5

1050 IF TALK THEN TALK=NO:GO TO RECEIVE
1060 LET TALK=YES:GO TO SEND

2000 REM

2001 REM Baudot to ATASCII table...
2000 REM ———— — i o — —
2010 REM NUL,E,LINEFEED,A,SPACE,S,I,U
2020 DATA -1,69,-1,65,32,83,73,85
2030 REM RETURN,D,R,J,N,F,C K
2040 DATA 155,68,82,74,78,70,67,75
2050 REM T,Z,LLW,H,Y,P,Q}

2060 DATA 84,90,76,87,72,89,80,81
2070 REM O,B,G,Numbers, M, X,V, Letters
2080 DATA 79,66,71,1,77,88,86,0
2090 REM NULL,3,LF,-,SPACE,BELL,8,7
2100 DATA -1,51,-1,45,32,253,56,55
2110 REM RETURN,$,4," COMMA !, (
2120 DATA 155,36,52,39,44,33,58,40
2130 REM 5,7,),2,#,6,0,1

27140 DATA 53,34,41,50,35,54,48,49
2150 REM 9,?,+Numbers,.,/,;, Letters
2160 DATA 57,63,43,1,46,47,59,0
2200 REM

2201 REM ATASCII to Baudot table...
2200REIM ———— i o o
2210 REM Graphics characters incl. CR
2220 DATA 0,0,0,0,0,0,0,0

2230 DATA 0,0,0,0,0,0,0,0

2240 DATA 0,0,0,0,0,0,0,0

2250 DATA 0,0,0,8,0,0,0,0

2260 REM SPACE,!,” #,%,%,&,’

2270 DATA 4,-45,-17,-20,-9,0,-26,-11
2280 REM (,),*,+ ,COMMA -, .,/

2290 DATA -15,-18,0,-26,-12,-3,-28,-29
2300 REM 0,1,2,3,4,5,6,7

2310 DATA -22,-23,-19,-1,-10,-16,-21,-7
2320 REM 8,9,:,;, <,=,> ¢

2330 DATA -6,-24,-14,-30,0,0,0,-25
2340 REM @ ,A,B,C,D,E,F,G

2350 DATA 0,3,25,14,9,1,45,26

2360 REM H,I,J,K,L,M,N,O

2370 DATA 20,6,11,15,18,28,12,24
2380 REM P,(Q,R,S,T,U,V, W

Sample Programs 57

PROGRAMMING
A PRINTER

58 Sample Programs

2390 DATA 22,23,10,5,16,7,30,19
2400 REM X,Y,Z,Graphics characters
2410 DATA 29,21,17,0,0,5,0,0

2420 REM A - Z again

2430 DATA 0,3,25,14,9,1,45,26
2440 DATA 20,6,11,15,18,28,12,24
2450 DATA 22,23,10,5,16,7,30,19
2460 DATA 29,21,17,0,0,5,0,0

9999 END

Here are two examples of programming printers connected serially through RS-
232-C SERIAL INTERFACE ports. It is assumed that there are fundamental dif-
ferences between the two — the characteristics of each printer control how that
printer must be programmed. These two sample programs (or program fragments)
are not intended to show general techniques, but are examples of how certain
specific needs can be met.

The printer being programmed here is able to buffer and hold characters ahead of
its printing (or it is so fast that it is always ready to accept characters to print). When
it does not want you to send more data, it sets a READY line OFF; that line is con-
nected here to the DSR pin on the RS-232-C SERIAL INTERFACE port. However, the
printer sets its READY line OFF early — it is still able to collect up to 32 characters
after it says it's full. In other words, since the RS-232-C SERIAL INTERFACE ports
send data out in blocks of up to 32 characters, it is only necessary to monitor the
DSR line once per block.

The automatic monitoring of DSR once per block is set up in line 150. In line 160,
we tell the interface module to add LF to each CR (this printer wants the LF).

When a block is about to be sent, the interface module checks DSR (per our re-
quest). If it is OFF, the resulting NAK error is trapped (line 360), and in the TRAP
routine (900 etc.) the program checks that the TRAP was really caused by the DSR
being OFF. If this was the cause, the PRINT is simply retried — eventually it will suc-
ceed because the printer will become ready again.

140 OPEN #5,8,0,"'R2:"
150 XIO 36,#5,0,4,"R2:":REM Monitor DSR
160 XIO 38,#5,64,0,'R2:"":REM Add LF to CR

360 TRAP 900
370 PRINT #5;.... REM PRINT something to R2:

READING
A DIGITIZER

60 Sample Programs

540 STATUS #5,XXX:REM Check ready
550 IF PEEK(747) <128 THEN 540

560 PUT #5,CHARACTER

570 XI1O 32,#5,0,0,"'R2:""

580 NEXT ETERNITY

900 REM

YOTREM == ========

902 REM

910 CLOSE #5:CLOSE #1

920 END

This is an example of reading data from a digitizing pad. A digitizing pad is a device
that is capable of sensing the position of a handheld object (a special pen or
whatever) and reporting its location to the computer.

The digitizing pad used in this example is capable of sending its information to the
computer at speeds up to 4800 Baud, so that Baud rate is used here. Each sampled
pen position is 14 characters long: a digit indicating whether or not the button on
the pen is being pushed, the x-coordinate (6 characters), the y-coordinate (6
characters), a CR and a LF. Since the LF follows the CR, the interface module will
read it as the first character on the following input line.

If we assume that the digitizer sends the pen coordinates as fast as it can, then
BASIC will not be able to keep up at 4800 Baud. A lower Baud rate might allow
BASIC to get every sample, but at 300 Baud, for example, it would take about half a
second for each sample to come in (15 characters at 30 cps). Thus we want the data
to come in at the highest possible rate. [t really doesn’t matter if we miss samples,
because the pen is usually in pretty much the same place sample after sample.

Therefore, it is all right if the digitizer sends samples as fast as it can and the pro-
gram just grabs them now and then when it can. However, take into account the
way the interface module behaves when data arrives too fast: when the computer’s
holding buffer fills up, the newest data replaces the oldest. An INPUT statement
reads the oldest data — which is messed up by being replaced by the newer data!

This is actually very trivial to solve. Look at line 100. A sample is INPUT twice. The
first INPUT gets the messed-up sample which has been written over by new data.
Then the second INPUT gets a sample from the buffer which is unharmed. (This
works because the sample contains enough characters to allow an INPUT to get
significantly ahead of the arriving character stream, and because the sample con-
tains fewer characters than the holding buffer.)

Lines 110 - 130 extract the coordinates from the sample. It was not possible to use
an INPUT statement with these number variables because the sample does not
have commas between the sample numbers. The details of what the program does
with the samples is not shown (in order to keep the example to the important
points).

10 DIM IN$(16)

20 X1O 36,#5,13,0,"R2:"
30 OPEN #5,5,0,R2:""
40 XIO 40,#5,0,0,"'R2:""

100 INPUT #5,IN$:INPUT #1,IN$
110 LET BUTTON=VAL(IN$(2,2))
120 LET X=VAL(IN$(3,8))

130 LET Y=VAL(INS$(9,14))

590 GO TO 100:REM Get next point

Sample Programs 61

12

INTERFACE MODULE
ELECTRICAL SPECIFICATIONS

RS-232-C
STANDARD

RS-232-C
SPECIFICATIONS

RS-232-C is the standard adopted by the Electronic Industries Association (EIA) to
ensure the uniformity of transmission of data between data communications equip-
ment and data processing terminals. This standard is followed by most equipment
manufacturers.

The RS-232-C standard defines a range of values of electrical parameters for a com-
munication link. The ATARI 850 Interface Module is the device used in ATARI
Home Computer to adapt to the values of these parameters. The interface module
organizes the bit stream of communication according to software-coded intruc-
tions.

When we refer to a communication port as a RS-232-C SERIAL INTERFACE port, we
mean that signals to or from that port conform to the RS-232-C standards. We also
use the adjective ‘'RS-232-C-compatible’” when the communication conforms to
essential aspects of the RS-232-C standard. Perhaps the most important aspect of
the standard is the specification of voltage levels corresponding to mark and space.
Accordingly, many other publications may use the term *“RS-232-C compatible” to

I

mean ‘‘using the voltage levels in the RS-232-C standard.”

RS-232-C compatibility has come to cover many devices that are not “data sets’’ or
“’data terminals,”” particularly in the personal computer world. This usually means
the device conforms to the electrical RS-232-C specification, which is shown in
Table 12-1. Sometimes such devices (which include printers, plotters, digitizing
pads, and many other devices) also have lines that are called DSR, DTR, RTS - and
so on. However, their use is often different from the use covered by the RS-232-C
standard and usually the use is specific to the device. One such use is to signal
readiness to accept data from your computer (as opposed to sending XOFF/XON
over a data line). Unfortunately, there is no standard of how many characters the
device will accept after the line goes OFF, nor a good way to determine where to
start up again when the device becomes ready (if characters have been lost). You
will have to familiarize yourself with your device’s characteristics and then program
your ATARI Home Computer and the interface module accordingly.

Table 12-1 RS-232-C Electrical Specifications

FIRST STATE SECOND STATE
TYPE OF SIGNAL —24 volts to =3 volts +3 volts to +24 volts
Binary signal 1 0
Signal condition MARK SPACE
Control function OFF ON

Interface Module Flectrical Specifications 63

ELECTRICAL
SPECIFICATIONS
OF THE

SERIAL PORTS

[t is common practice when using the 25-pin D-connector most used with RS-232-C
to connect XMT to pin 2, RCV to 3, RTS to 4, CTS to 5, DSR to 6, common signal
ground to 7, CRX to 8, and DTR to 20. However, these conventions may not be
followed; you may also run into cases where the other pins in the connector have
either entirely unrelated functions (such as other types of communication stan-
dards on the same connector) or possibly related functions (such as setting the
Baud rate by connecting two pins). Carefully read the instructions of any device you
intend to connect to the ATARI 850 Interface Module! You may have to make your
own cable to connect the device to the interface module.

The RS-232-C standard does not specify how data should be transmitted on XMT
and RCV. In fact, RS-232-C explicitly avoids this issue. Fortunately, common con-
vention and other standards have settled on a fairly universal serial data transmis-
sion convention. When data is not being sent, the data line sits idle in the MARK
state. A data character (sometimes called a transmission WORD) is signalled by one
START BIT, represented by the SPACE state. It is followed by the data bits (most
commonly 8 of them), each bit being represented by SPACE for 0 and MARK for 1.
The word is terminated by 1 (sometimes 2) STOP BIT(s), represented by the MARK
state. The next word can immediately follow with its start bit. If it does not, the line
stays idle in the MARK state (effectively, the stop bit lasts indefinitely).

The data bits are sent least-significant first. The bit numbered 0 is sent first, 1 next,
and so on. The receiver does not know when a character will be coming, so it con-
stantly monitors the stopped MARK state looking for the transition to a start bit. The
receiver can then receive the rest of the bits in the word because it knows when
each will arrive — each bit has the same duration as established by the Baud rate of
the communication. Of course, both the transmitter and receiver must use the
same Baud rate.

There are only a small number of common Baud rates, and the ATAR! 850 Interface
Module supports all of the most common ones. The most common transmission
word size is 8 bits; when sending ASCH, which is a 7-bit code, the 8th bit usually
represents the parity, is just set to 1 or 0, or is used as a marker bit of some sort.
ASCII is very occasionally sent in 7-bit words. The interface module supports 7-bit
words for these cases, and can also be used for communication with 7-bit or 6-bit
codes such as BCD (with or without parity). Five-bit words are also allowed so you
can communicate with old Baudot code teletypes for radioteletype and similar
uses.

Refer to the interface module schematic diagram in Appendix C while reading this
section.

There are basically two types of circuits for the serial port lines: a receiving circuit,
and a transmitting circuit. One of these circuits connects each RS-232-C signal line
to a pin of one of the two computer I/O chips in the interface module.

The sending circuit consists of an operational amplifier (op-amp) followed by a
10-ohm protective resistor. The op-amp is driven “to the rail,”” and produces
approximately + 9 volts for SPACE, and — 5.5 volts for MARK (guaranteed at least +
or =5 volts), when driving a 3000-ohm load (3000 ohm is the worst-case load
allowed by the RS-232-C standard; any lower resistance may result in improper
operation). The driver circuit will withstand short circuits to ground, and will with-
stand connection to voltages within their driving range. Shorting a driver to a
voltage outside the range -5.5 to +9 volts may result in damage to the interface
module.

64 Interface Module Flectrical Specifications

66

Data 0-7 '
|

- }

Strobe m
|

Busy

After sending each data byte to the printer, the interface module waits for a BUSY
signal. The ATARI 825 80-Column Printer sends a positive-logic BUSY signal as it
processes each byte of data. The BUSY is quite short for most data bytes since the
printer merely saves each character in its own memory, but BUSY is quite long
when the printer prints. The interface module does not care how long the printer is
BUSY — the only requirement is that the printer respond to all 40 characters (that
is, go not BUSY after the last character) within 30 seconds. Immediately after BUSY
goes low again, the interface module sends the next character to the printer. When
all the characters have been accepted by the printer, the interface module signals
the computer that the print operation is finished.

Note: Early versions of the ATARI 850 Interface Module will wait four seconds for
the printer to respond. If you suspect that you may have an early version, contact
your nearest Authorized ATARI Computer Service Center for details on upgrading.

Some printers using the Centronics-type interface do not signal BUSY for each
character received, but only go BUSY during printing. For this reason, the interface
module only waits 200 microseconds for BUSY after sending a data byte. If BUSY
does not go on within this time, the interface module sends the next character,
assuming the printer has completed its processing of the preceding character.

Figure 12-1 Timing of Printer Ports

i

etc.

J etc.
/—— etC.

.

|
!
L 37_,

e
.'

37 37 to 200*

|
us : ! us us |
% \ |
L ' |
I 50us | go***
I I“min**"f‘_ —
ps I
!

|
|
|
|
i

|
. 50us |
min

*One byte sent every 280 microseconds without BUSY
**Pulse must be > 50 microseconds, no maximum. However, 40 characters
must be accepted by the printer in 30 seconds.
*** Approximate
****BUSY may follow either leading or trailing edge of STROBE. However, it
must remain at least 50 microseconds after trailing edge of STROBE.

Interface Module Electrical Specifications

68 Principles of Operation

Block Mode output takes data from BASIC PRINT or PUT statements, puts each
character through translation, and puts each character into the 32-byte output buf-
fer. The buffer is transmitted when it fills, or when 13 (decimal) is stored into the
buffer (automatic short block on CR). Data from the buffer is sent to the interface
module as 8-bit bytes. If 7-, 6-, or 5-bit words are configured, the interface module
strips the necessary number of high-order bits from each byte before transmitting it
to the port. If monitoring of any external status line has been configured for the
port, the readiness is checked by the interface module whenever a block is sent to
it. If not ready, the interface module returns a NAK. The ATARI Home Computer
waits while the interface module transmits a block.

The FORCE SHORT BLOCK command causes the handler to transmit the block of
data before 32 bytes have been collected. If there is no data in the buffer, the
FORCE SHORT BLOCK command has no effect. See Section 4 and Appendix B.

When START CONCURRENT MODE 1/O is performed, a number of things occur.
The handler marks the Concurrent Mode /O as active (if there are no errors while
starting Concurrent Mode 1/0). The handler sets up its own serial input/serial out-
put interrupt handlers as necessary (depending on I/O direction) to field data going
in and out. The handler establishes the initial (empty) state of the input and output
buffers. Then the handler informs the interface module that Concurrent Mode 1/O
should be started.

During Concurrent Mode 1/O, each character being received from the interface
module is taken in by the handler’s interrupt driver and placed in the input buffer.
Characters to be sent to the interface module are translated and put in the output
buffer. As the serial hardware in the computer finishes sending each character, the
output interrupt driver immediately sends another character from the buffer (unless
itis empty). If the input buffer overflows, an error is flagged; output buffer overflow
stops putting data into the buffer until data is sent to free buffer space. See Sections
4,9, and 10 for more information.

Input and output statements (GET, PUT, PRINT, INPUT) executed to a channel
through which Concurrent 1/O is active do not directly cause any I/O to the RS-232-
C SERIAL INTERFACE port. Rather, input statements simply retrieve data that is in
the input buffer (translation occurs at this time), and output statements put data in-
to the output buffer. If an input statement wants more data but the input buffer is
empty, BASIC will wait until the data arrives. If an output statement attempts to put
data into a full output buffer, BASIC will wait until space becomes available. This is
a result of the interrupt-driven sending of data from the output buffer, which starts
as soon as data is put into the buffer. The data is moved into and out of each buffer
circularly—that is, the buffer is automatically reused. The maximum amount of data
a circular buffer can hold at once is one byte less than its size.

The interface module handles Concurrent /O in one of two ways. The most com-
mon mode is used when 8-bit words are being transmitted, no matter what the rate
or /O direction. In this mode, the interface module ““connects’’ (through the inter-
face module’s microprocessor) the transmit (XMT) and receive (RCV) lines of the
selected port to the 1/O connector going to the computer. The data is not inter-
preted by the interface module in this mode; all serialization of the data is per-
formed by the serial I/O hardware in the computer console. Note that the ““con-
nection”” between the RS-232-C SERIAL INTERFACE port and the computer's
peripheral 1/0O port is handled by software. Each line coming into the interface
module (one from the computer, one from the RS-232-C SERIAL INTERFACE port)
is sampled (checked) over and over, and its value is then passed on to the ““con-
nected’”’ outgoing line. The sampling rate is 34.6 kHz; the lines are sampled every
28.9 microseconds.

70 Principles of Operation

The interface module translates EOL into ASCI! CR (Carriage Return, 13 decimal).
No other translations are made. In particular, bit 7 (high bit) of each byte is not
changed, and LF is not added following CR. However, multiple EOL’s in a row,

without intervening characters, are sent to the printer as alternating CR’s and
blanks.

A special note about LPRINT in BASIC: LPRINT is equivalent to OPEN, PRINT and
CLOSE all in one. Execution of an LPRINT statement with a comma or semicolon at
the end will send to the interface module a 40-character buffer which is padded
with blanks but does not have an EOL character. The interface module will send all
40 characters to the printer (including the blanks), but the printer will probably not
respond because most printers wait for CR before activating a print cycle.
Therefore, LPRINT should not be used when you want a comma or semicolon on
the end of your statement. Use PRINT in those cases. LPRINT uses IOCB #7 ex-
clusively.

The STATUS request for device P: is answered by the interface module if there is a
printer attached and it is turned on. The status returned in location 746 (decimal) is
128 if the previous operation to the printer was successful; 129 if the previous com-
mand to the interface module printer port was bad; 130 if the previous 40-byte data
frame had an error (this should not happen); and 132 if the previous command
timed out—that is, the printer stayed BUSY more than 30 seconds,

NOTICE

Use of multiple printer control codes that involve carriage motion (with the
exception of end-of-line), may cause an ERROR 139 (Device NAK). Car-
riage motion includes backspace, forward and reverse linefeeds, and par-
tial linefeeds.

The ATARI 850 Interface Module sends data to the printer in 40-character
blocks. If there is more than one carriage motion in each block, the printer
may not recover in time to receive the next 40-character block.

If you should have this problem, check your program. Try to arrange your
printer control codes in such a way that there is no more than one carriage
motion in each 40-character block. This can be done by preceding each
carriage motion with 40 ‘“‘null’” characters. Null characters can be
generated with control comma () or with the BASIC command
CHR$(0).

DECIMAL CODE

27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

72 Appendix A

HEXADECIMAL CODE

1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2F
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C

ATASCII ASCII
CHARACTER CHAR

ESC
FS
GS
RS
us
SP

O O N o R W N

MEANING
Escape

File separator
Group separator
Record separator
Unit separator
Space
Exclamation point
Quotation mark
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Opening parenthesis
Closing parenthesis
Asterisk

Plus

Comma

Hyphen (minus)
Period (decimal point)
Right Slant

Zero

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Colon

Semicolon

Less than

ATASCII ASCII

DECIMAL CODE HEXADECIMAL CODE CHARACTER CHAR MEANING
95 5F — Underscore
96 60 Grave accent
97 61 a Lowercase a
98 62 b Lowercase b
99 63 C Lowercase ¢
100 64 d Lowercase d
101 65 e Lowercase e
102 66 f Lowercase f
103 67 g Lowercase g
104 68 h Lowercase h
105 69 i Lowercase i
106 b6A j Lowercase j
107 6B k Lowercase k
108 6C | Lowercase |
109 6D m Lowercase m
110 6E n Lowercase n
111 6F 0 Lowercase o
112 70 p Lowercase p
113 71 q Lowercase q
114 72 r Lowercase r
115 73 S Lowercase s
116 74 t Lowercase t
117 75 u Lowercase u
118 76 \% Lowercase v
119 77 w Lowercase w
120 78 X Lowercase x
121 79 y Lowercase y
122 7A z Lowercase z
123 7B { Opening brace
124 7C | Vertical line
125 7D 3 Closing brace
126 7E Y Tilde
127 7F DEL Delete

74 Appendix A

DECIMAL CODE HEXADECIMAL CODE ATASCII CHARACTER

157 90
158 9t
159 9t
160 AO []
161 AT []
162 A2 []
163 A3]
164 A4
165 A5
166 A6 [¢]
167 A7]
168 A8 (<]
169 A9 [>]
170 AA
171 AB
172 AC []
173 AD =
174 AE []
175 AF
176 BO [e]
177 B1
178 B2
179 B3
180 B4 [4]
181 BS
182 B6 B
183 B7
184 B8
185 B9 [2]
186 BA [:]
187 BB (]
188 BC
189 B []
190 BE

76 Appendix A

DECIMAL CODE HEXADECIMAL CODE ATASCH CHARACTER

225 E1 [a]
226 £2 [v]
227 E3
228 b4 [<]
229 E5 [¢]
230 E6
231 £7 (2]
232 €8 []
233 F9 [1]
234 EA
235 EB [+]
236 EC [1]
237 ED [»]
238 FE (]
239 EF [o]
240 FO [¢]
241 F1 (4]
242 F2
243 F3
244 F4
245 F5 [v]
246 F6 [+]
247 F7 [¥]
248 8 [x]
249 F9 [+]
250 FA (=]
251 FB [*]
252 e [1]
253 D
254 FE [q]
255 FF]

78 Appendix A

82

Table B-1 Baud Rate Specifiers To Add to Aux1

BAUD RATE
ADD (bits per second)

300
45.5*
50*
56.875*
75* *
110
134.5%**
150
300

600

10 1200

11 1800
12 2400
13 4800
14 9600
15 9600

LCONOUTA WN—=O

*These Baud rates are useful for communications with Baudot teletypes, for
RTTY (radioteletype) applications. They are more commonly referred to as 60,
67, and 75 words per minute.

**This Baud rate is sometimes used for ASCIl communications and may also be
used for 5-bit Baudot RTTY. The latter is commonly referred to as 100 wpm.

***This Baud rate is used by IBM systems.

Table B-2 Word Size Specifiers To Add to Aux1

WORD SIZE
ADD (bits)
0 8
16 7
32 6
48 5

Table B-3 Specifier for Two Stop Bits To Add to Aux1

STOP BITS SENT

WITH EACH
ADD WORD
0 1
128 2

Appendix B

Table B-7 Output Parity Mode Options Added to Aux1

Add To get
0 Do not change parity bit
1 Set output parity odd
2 Set output parity even
3 Set parity bit to 1

Table B-8 Append Line Feed Options Added to Aux1

Add To get
0 Do not append LF
64 Append LF after CR (translated from EOL)

CONTROLLING Format: XIO 34, #1OCB, Aux1, Aux2, “‘Rn:”’
THE OUTGOING Example: X1O 34, #5, 160, 0, 'R1:”

LINES DIR, This controls th f XMT and the outgoi trol lines DTR, RTS
RTS, AND XMT 1S controls the use o an e outgoing controi lines , .

34 specifies this /O command.

Aux1 is coded to specify control of DTR, RTS, and XMT. The coding is given in
Tables B-9, B-10, and B-11. Add one number from each table.

Aux2 is not used by this command. It should be set to zero.

Table B-9 Control Values for DTR Added to Aux1

Add To get

0 No change from current DTR setting
128 Turn DTR OFF
192 Turn DTR ON

Table B-10 Control Values for RTS Added To Auxl

Add To get

0 No change from current RTS setting
32 Turn RTS OFF

48 Turn RTS ON

84 Appendix B

Pin 4 Receive Data (In) Pin 3 Send Data (Out)

Pin 5 Signal Ground ——— —— Pin 1 Data Terminal Ready
(DTR, Ready Out)

Pin 6 Data Set Ready
(DSR, Ready In)

(@ (m @) &

Figure C-2 Pin Functions of SERIAL INTERFACE Ports 2 and 3
(9-pin female connector)

88 Appendix C

1 Send Data + —
TTY Printer
Solenoid E < 20 m;A

3 Send Data — -l

|~7 Receive Data +—l
;20 mjA TTY Keyboard
Contact

9 Receive Data —

4

Figure C-4 Hook Up of SERIAL INTERFACE Port 4 for Use

Pin 5 Data Bit 3
Pin 6 Data Bit 4
Pin 7 Data Bit 5
Pin 8 Data Bit 6

Pin 15 Data Bit 7
Pin 13 Busy

With a 20-mA Loop Device

Pin 4 Data Bit 2
Pin 3 Data Bit 1
Pin 2 Data Bit 0
Pin 1 Data Strobe

Pin 9 Data Pins
Pull-Up (+5v)

Pin 11 Signal Ground

Pin 12 Fault

Figure C-5 Pin Functions of the Printer Port (15-pin female connector)

90 Appendix C

+5v

NOTE: Ri70 Jio!
1. UNLESS OTHERWISE SPECIFIED SOn
(A) ALL CAPACITORS ARE IN WF
- Cl49 (E) ALL RESISIORS ARE IN OMMS,1/4w,5% ;_—_94 DATA
i (C) ALL DICDES ARF 1n814 RIIO s
3 10K
45V RIOI ! DATA
47K P Y STRORE
° '21/
A% "% AllOA RIII
c1so col B 10K
2
L . s
20) RI2
Vee 24 10K
i 3 DATA
pai |23 3 BIT
22
PB2 2 RII3
PB3 10K
I9 4 DATA
PB4 s 8IT2
L]
o 112 RII4
[10K
PB;’ [5 DATA
:5 14 b BIT 3
pas 43 RIS b
3 10K P
ge 2 8] & Joara
,54 PA4 Y o {BIT4
= [ad
% oM™ 1 RII6 z
7 ’ I3 [% z
NI 7(”) 3] e 08 10K , para
+5v ((AB)) 38] g, eaz 12 L L o e
Ri52 Ri53 ai2) 37| = ° A =
3K 3K a2 hd oy RIIT7 2
Clo7 10K 4
(A8) .00l RIO8 —= 8| « |pata
(A7) pap |2 = ror% 8 o |aiTs
=1 Py *— AlOSE RIl8
/ 39 7
il I Rios " sl foam
+ RES = 10K - 9/ hd ar7
AAVA iRQ__vas fNV‘— Alloc
s gz s B J_I ci09 = o
l‘ ~ +5V N/ 001 = =
ol ~| © ol 2l - — - 8 RII9
|) & B o | m = $ 10K
- m
TREge g % SHwfe C"O% anoo Y —e WAW—2 ausY
C|,5| 001 = 4
. - RI71
faggsiel = 10k
.o QA a2 & - 5 R120
MR N EIE S - &—
BTN BN Bl Ml et Sl - T = 10K JE—
{ chi = Ao 2 AWA—2 FRULT
L0001 ==
= 3 i sI6
%o'i' L
L

cl23

L oo

clle clz clie
.00I 00l [e]e]}

RIAL INTERFACE NO. 3

INTERFACE NO. 2 I JI03

SERIAL INTERFACE NO.I

a < < L az> oo va > [T ©
3 3z e §0— Ewa I ;Eo 2e 2% el uo Wo =)
1Y a T = anx < wa w & [Lox = @
w 2 a g w a o a a T
K «s L wo v <0
3 <a w
© o

850 Interface Module Schematic Diagram

91

ATARI 830
ACOUSTIC
MODEM

94 Appendix D

System stops when No data — see above
INPUT is tried No EOF: data contains no EOF or translation mode is
incorrect (CR not becoming EOF)

System behaves Concurrent input still active — be sure to ter-
sluggishly when minate (close OCB)

program is no

longer running

System dies Failure to terminate Concurrent /O before doing
other serial 1/0O
Editing BASIC program or executing BASIC
statements in immediate mode while Concur-
rent [/O active — remember to close IOCB

If you have problems, the most likely reason is the phone line. Noise on the line or
a weak phone line signal can often result in lost or invalid data. Try to redial the call
to ensure that the connection is noise-free and there is no interference.

The ATARI 830 Acoustic Modem has a test mode to verify that the modem is work-
ing properly. The test mode switches the transmitter frequencies to match the
receiver. All data into the modem will be looped back to the computer console for
verification. The test requires an isolated acoustic path between the speaker and
receiver of the telephone handset.

To test the originate mode, use the ATARI Telelink 1 cartridge or the special Test
Program shown below. Set the O/A switch for Originate and the F/H switch to the
center position (TEST). If there is no tone, the unit is defective. Dial a single digit on
the telephone to get a quiet line, then immediately place the handset into the
acoustic muffs. Wait for the READY light and then type a message on the keyboard.
The TEST function will display the message. Check the television screen for errors.

After the originate test, quickly push the O/A switch to A with the telephone still
connected to the modem. Wait for the READY light and repeat the test.

Note: A quiet line is required to prevent dial tone interference. By dialing one
digit, you may only get a quiet line for 30 seconds. You may have to repeat the pro-
cess. A longer quiet time can be obtained by calling a friend. The mouthpiece of
the friend’s phone must be covered or removed to prevent room noise in-
terference.

If communication still cannot be established and the modem checks out in the
TEST mode, see tables below for other possible causes for failure.

96 Appendix D

Double Character
Display:

Is Modem in half-duplex mode?

1. If remote computer echoes all characters the
modem should be in full-duplex mode.

2. If communication system is half-duplex (no
echo), the modem should be in half-duplex.

Garbled Display:

Is telephone handset fully seated in the rubber muffs?

Is Baud rate correct? Both local and remote terminals
must send data at the same Baud rate (300 Baud or
less).

Is received signal too weak or noisy? Pick up handset
and listen for a clean tone (if remote modem is in
answer mode). If additional tones, dialing pulses,
static noise or voices are present, data may be
garbled. Re-dial call.

100 Appendix E

Note: Attempts to operate more than one printer at a time will result in unpre-
dictable operation. While one printer may “‘win’’ most of the time, errors are
always possible, and exactly which error occurs is a matter of chance. If you have
more than one ATARI Printer attached to your computer, turn on only one at a
time.

102 Appendix F

TEMPERATURE
Operating environment: 32 to 122 degrees Fahrenheit. (0 to 50 degrees
Centigrade)

Storage: -40 to 140 degrees Fahrenheit. (-40 to 60 degrees Centigrade)

ELECTRICAL REQUIREMENTS
Uses 117 VAC (4 watts) with power adapter

24 VAC/150mA supplied by UlL-listed wall-mount transformer with 6-foot
cord.

HUMIDITY

Operating environment: 10 percent to 90 percent relative humidity (no con-
densation).

Storage: 5 percent to 95 percent (no condensation).

TRANSMITTER FREQUENCIES
Originate:

Mark: 1270 Hz

Space: 1070 Hz

Answer:
Mark: 2225 Hz
Space: 2025 Hz

RECEIVE FREQUENCIES
Originate:
Mark: 2225 Hz
Space: 2025 Hz

Answer:

Mark: 1270 Hz
Space: 1070 Hz

TRANSMIT/RECEIVE RATE
300 Baud (Max.)

RECEIVE SENSITIVITY

-45 dBm

CONTROLS

FULL/TEST/HALF
FULL: Sets Full-Duplex operation.
TEST: Sets up audio self-test mode.
HALF: Sets Half-Duplex operation.

ANS/OFF/ORIG

ANS: Sets answer mode.
OFF: Turns unit power off.
ORIG: Sets originate mode.

106

Index

H

Half Duplex 3, 6, 18, 22, 69
Handshake, handshaking 3, 6

IOCB 10, 17, 19-21, 23, 28-33, 38-43, 45,
69, 70, 81, 85
IOCB (defined) 15, 81

L

Line Feed (see LF)
LF (Line Feed) 15-17, 25-28, 54, 58-60, 70,
71

M

Mark 21, 29, 63-65, 67, 79

N

NAK (Not Acknowledge) 46, 58, 68

o

Operating System (see OS)
OS (Operating System) 9, 10, 13, 34, 67

P

PARALLEL INTERFACE 67, 69
Parity 15, 16, 21, 25, 27

R

RCV (Received Data) 4, 5, 18, 43, 44, 47, 48,
64, 65, 69

Received Data (see RCV)

Request to Send (see RTS)

RS-232-C 7,9

RS-232-C defined 3-6, 63

RS-232-C Port 7-9, 13, 15, 16, 22, 26

RS-232-C Handler 8, 13, 37, 38, 40, 67, 69

RTS (Request to Send) 4, 5, 16, 18, 29, 30, 63,
64, 84

S

Serial Interface Port (See RS-232-C Port) 13,
15-17, 22, 29-32, 34, 35, 39, 43-45, 53, 58,
63, 67, 68, 81, 87-92

Set Baud Rate (see Configure Baud Rate)

Set Translation Mode (see Configure Translation
Mode)

Signal Detect (see CRX)

Signal Ground 4, 5

THE SOURCE 11

Space 21, 29, 63-65, 79

Start Bits 21, 79

Start Concurrent Mode 18, 19, 33, 35, 3741,
46, 68, 85

Stop Bits 15, 16, 22, 45, 64, 79

Status Request 34, 70

Symbolic Constants 10

T

Telelink 6, 11, 15, 19
Terminal 3

Translation 15, 16, 79
Transmit Off (see XOFF)
Transmit On (see XON)
Transmitted Data (see XMT)

X

XIO Commands 45, 81-85

X0 32 81

X0 34 19, 30, 84

XIO 36 19, 21, 81

X0 38 19, 28, 83

XIO 40 10, 37, 38, 85

XMT (Transmitted Data) 4, 5, 18, 29, 30, 64,
65, 67, 68, 84, 85

XOFF (Transmit Off) 6, 63

XON (Transmit On) 6, 63

