

 Filename [FILIPAK.OMNI]THEORY.LST

 THE THEORY BEHIND OMNI MARCH 7, 1984

Document Source: atarimuseum.com

 A PRIMER ON DIGITAL GRAPHICS FOR BROADCAST TELEVISION

 FOREWORD

 A dirth of technically competent management is a serious handicap

 that a technologically based company can ill afford. A prevailing

 view is that Atari's corporate management is not just ill-equipped

 to understand the issues inherent in the computer and video graph-

 ics industries, but, worse still, that management is actively un-

 concerned with such details, that is, that they don't want to know

 such unfathonable things. The fear of technology runs rampant in

 today's society. Should this fear not naturally find its way into

 the corporate board room? It would be very surprising if it did

 not. Technological leadership and innovation go hand in hand. In

 their roles as pace setters, corporate leaders are obliged to be-

 come at least modestly conversant with the technology which they

 promote. I prepared this document with that end in mind. Though

 intended as an OMNI promotional piece, it contains much practical

 knowledge relating to television and digital video graphics. (The

 document has been organized in such a way that the OMNI material

 can be deleted by ripping out the pages specifically dealing with

 it.) My co-workers have commented that if such a document were

 generally available in the past, the present Atari products would

 probably be better and cheaper. I have tried to present all sub-

 jects in a nontechnical way. The feedback I have gotten is that I

 have generally succeeded. So, please persevere. If you have any

 questions or comments, you will find me a good listener.

Document Source: atarimuseum.com

 MARCH, 1984 MARK FILIPAK

Document Source: atarimuseum.com

 A PRIMER ON DIGITAL GRAPHICS FOR BROADCAST TELEVISION

 MARCH, 1984 MARK FILIPAK

 CONTENTS TOPIC NUMBER

 CHAPTER 1 -- RESOLUTION AS IT RELATES TO GRAPHICS . . . 1

 Part 1 -- Pixel Resolution 1.1

 Luminance Limit 1.1.1

 Chrominance Limit 1.1.2

 Conclusion . 1.1.3

 Part 2 -- Physical Dot Resolution 1.2

 The Shooting Gallery 1.2.1

 Conclusion . 1.2.2

 Part 3 -- Color Resolution 1.3

 Selection of the Palette 1.3.1

 Shading & Color Tracking 1.3.2

 CHAPTER 2 -- THROUGHPUT AS IT RELATES TO GAMING 2

 Part 1 -- Maximizing CPU Timespace 2.1

 Loading Graphics 2.1.1

 Running Graphics 2.1.2

 Refreshing Graphics Memory 2.1.3

 Conclusion . 2.1.4

 Part 2 -- Minimizing Graphics Overhead 2.2

 Positioning Graphics 2.2.1

 Display Prioritization 2.2.2

 Scaling & Zooming 2.2.3

 Rotating, Inverting & Reflecting 2.2.4

 Clipping . 2.2.5

 Stenciling . 2.2.6

 Collision Detection 2.2.7

 Reusing Object Generators 2.2.8

 Special Effects 2.2.9

 General Considerations 2.2.10

 Conclusion . 2.2.11

Document Source: atarimuseum.com

 CHAPTER 1 -- RESOLUTION AS IT RELATES TO GRAPHICS 1

 Graphics designers and engineers call for ever higher resolution

 to produce better graphics. Many insist that standard broadcast

 TVs are not up to the task and, therefore, champion the use of

 expensive high resolution monitors. Other people are beginning to

 question this. They ask, "Why can't Atari make a system that looks

 as good as my home TV?"

 I question the requirement for a monitor. I believe that a stand-

 ard broadcast TV can produce astounding graphics. All I have to

 do is tune in a standard broadcast channel and look at it. (The

 running joke is "Wow! Great graphics. How'd they do it?") Con-

 sidering this obvious capability, I reviewed Atari's present and

 planned products and those of our competition and rejected them as

 simply mismatched to the standard broadcast television medium.

 Part 1 -- Pixel Resolution 1.1

 A pixel is defined as the smallest unit that can be created in a

 graphic medium. I will show that the pixels that can be generated

 on a standard broadcast TV are of such small size that they can be

 realistically termed "high resolution". Broadcast TV is a medium

 of rigid limits. Some of these limits are built into the trans-

 mitter, some are within the receiver and some are a consequence of

 human physiology. I will show that if these limits are recognized

 and properly allowed for, the result can surpass the displays and

 performance of arcade game machines. If the assumption is that

 higher resolution means higher frequency, then the system designer

 is forced by conventional logic to specify a monitor from the out-

 set. The logic of frequency limitations will always justify that

 decision.

 Pixel Resolution -- Luminance Limit 1.1.1

Document Source: atarimuseum.com

 Imagine a camera connected to a TV through a stand- ||||||||||||

 ard broadcast modulator. Imagine, further, a large ||||||||||||

 sheet of white paper facing the camera upon which a ||||||||||||

 pattern of black vertical bars are drawn like this .. ||||||||||||

 The physical setup looks like this:

 PAPER CAMERA

 | +------------+

 | +--| |

 | | | |

 | +--| |

 | +------------+

Document Source: atarimuseum.com

 What would you see on the television? Assuming there was adequate

 lighting, you would probably see the bars, but you might see one

 or more colors, instead. It depends upon the number of bars that

 were within the camera's field of view. Let me explain. Suppose

 that you did, indeed, see bars. If you then dollied the camera

 away from the paper more and more ever thinner bars would be with-

 in its field of view and, hence, the TV would show more and more

 ever thinner bars. But as you dollied back keeping an eye on the

 TV you might be surprised to discover that there was some kind of

 threshold position beyond which the TV display magically switches

 from bars to a shimmering rainbow of colors. Dolly back in across

 this threshold and the bars reappear, dolly out and, like magic,

 colors. What's happening here?

 The phenomenon is called color artifacting. It is the reason TV

 performers are prohibited from wearing tightly striped or checked

 clothing. The problem is not in the camera or in the modulator.

 It's an inherent propertly of the transmission medium. The TV has

 a limit of luminance resolution beyond which the alternating black

 and white bars become so small and tightly packed that they con-

 fuse the electronics into interpreting them as color. You would

 count 324* bars (162 pairs) at the threshold no matter what what

 size TV you used. These 324 bars (equivalent to a digital freq-

 uency of 3 mega-hertz) represent a limit to luminance resolution.

 Now that it has been established that 324 black/white alternations

 is the limit, does it make any sense to produce higher resolution?

 Yes, it does, as the following chart will illustrate:

 Black/White video

 ---> <--- frequency = 3 MHz.

 | | | | | |

 | BLACK | WHITE | BLACK | WHITE | BLACK | Pixel freq.

 | | | | | | = 6 MHz.

Document Source: atarimuseum.com

 | B : | W : | B : | W : | B : |

 | L : G | H : G | L : G | H : G | L : G | Pixel freq.

 | A : R | I : R | A : R | I : R | A : R | = 12 MHz.

 | C : E | T : E | C : E | T : E | C : E |

 | K : Y | E : Y | K : Y | E : Y | K : Y |

 * Comb-filtered TVs and some high quality TVs can display more

 than 324 black/white bars, but this is a good practical limit.

Document Source: atarimuseum.com

 There is one important fact from this discussion which relates

 negatively to Atari's present products. Since the pixel clock is

 fixed at the color sub-carrier frequency of 3.58 MHz, the follow-

 ing pixel sizes, frequencies and pixel counts result:

 PIXEL SIZE FREQUENCY* PIX/LINE+ COMMENT

 ---------- --------- -------- -------------------------

 half-clock 3.58 MHz 352 Useless - color artifacts

 full-clock 1.79 176 Highest useful resolution

 Using 3.58 MHz as the pixel clock was the worst possible choise.

 The optimum pixel frequency is 3 MHz and integer multiples of 3

 MHz. This would have resulted in a highest useful resolution of

 294 pixels/line instead of 176 pixels/line -- a 67% increase.

 Pixel Resolution -- Chrominance Limit 1.1.2

 Suppose you repeated the bar exercise, but instead of alternating

 black/white bars, you used alternating color/complimentary-color

 bars (eg, red/cyan, yellow/blue or green/magenta ...) You would

 find a second threshold at approximately 1/3 the distance from the

 paper. At a distance less than this chrominance threshold, the TV

 would display the color bars, but beyond the threshold, gray. You

 would count 108 bars (54 pairs) at the threshold (equivalent to a

 digital frequency of 1 MHz)which, once again, would be independent

 of the TV's size.

 Now that you have established that 108 color/complimentary-color

 alternations is the limit, does producing higher resolution make

 any sense? Yes, it does, as the following chart will illustrate:

 Red/Cyan video

 <------------ frequency = 1 MHz. ------------->

Document Source: atarimuseum.com

 | | |

 | R E D | C Y A N | Pixel freq.

 | | | = 2 MHz.

 | : : | : : M |

 | : Y : G | : : A |

 | R : E : R | C : B : G | Pixel freq.

 | E : L : E | Y : L : E | = 6 MHz.

 | D : L : E | A : U : N |

 | : O : N | N : E : T |

 | : W : | : : A |

 * Highest video frequency of Black/White bars

 + Line duration used in present products is 49 micro-seconds not

 54.2 micro-seconds. There is a 5.2 micro-second underscan.

Document Source: atarimuseum.com

 Pixel Resolution -- Conclusion 1.1.3

 Luminance variations which have no aggregate alternating charact-

 eristic present no luminance bandwidth limitation. However, if

 aggregate luminance variations produce even one cycle of alter-

 nation above 3 mega-hertz, then color artifacting can occur.

 Chrominance variations are produced by rotation of a color vector.

 In the previous example, a sweep from red to cyan represents a 180

 degree rotation of the color vector. Likewise, cyan back to red

 is another 180 degrees so that red to red is full circle. Since a

 scan line is 54 micro-seconds in duration and 54 such chrominance

 alternations can be accomodated per line, then one alternation is

 1 micro-second long. Since this represents a complete rotation of

 the color vector, then it is more meaningful to say that the limit

 of chrominance resolution of broadcast TV is one rotation of the

 color wheel per micro-second.

 Here are the brightness profiles for the smallest objects a broad-

 cast TV can easily produce:

 Chrominance body <---------------------> 500 nano-seconds

 Luminance edges <-----> <-----> 167 nano-seconds each

 bright

 %%%%%%%%% ::::::::: *********

 %%%%%%%%%%%%%%% dim ::::::::::::::::: *****************

 %% object 1 %%%%%% ::::::: object 2 :::::: ******* object 3 ****

 334 nano-seconds ---> apparent size <---

 (based on half-power)

 Objects 1, 2 and 3 cannot possibly produce excessive chrominance

 changes and their edges cannot possibly produce color artifact-

Document Source: atarimuseum.com

 ing. A standard TV can display 108 such objects without violating

 either chrominance or luminance limits. At this point the reader

 must decide whether displaying 108 colored objects per line, with

 1/10 inch diameters and 4/100 inch shaded edges each (on a 25 inch

 TV), can be called "high resolution". If it can, we must conclude

 that high resolution can be acheived on a standard broadcast TV.

 With judicious choices for adjacent colors, even higher resolution

 can be achieved.

Document Source: atarimuseum.com

 Pixel Resolution -- OMNI 1.1.4

 Imagine two bit maps. One has 480 lines of 324 color-pixels per

 line to portray the chrominances and luminances in a scene; each

 color-pixel can be any one of almost 2800 colors. The other has

 480 lines of 648 intensity-pixels per line to define edges or to

 do shading, texturing, etc.; each intensity-pixel can be any in-

 tensity from full (as determined by color) to black in 16 steps.

 Further, imagine that these two bit maps are overlaid, intensity

 upon color, in the output to produce the TV image. That is OMNI.

 details edges

 full +-----+ +---------------+ +------+

 ^ | |/| |/ / / /| | / / /

 | | +-+ +-+ / +-+ |/ / /:

 16 | |/ /| | ONE LINE OF

 levels | intensity +---+ | INTENSITY

 | | | / :

 min !______________________________________!/ :

 / :

 / / / / / / INTENSITY BIT MAP / / / / / / :

 / / / / / 648 PIXELS PER LINE / / / / / :

 /_/ OVERLAYS

 : :

 white luminance shading : :

 ^ @@@@ ########:### V

 | @@@@@@@@@@@@ / / / / ########:### / /

 24 @@@@@@@@@@@@@@@@@@@@/ / ########:###/ /

 levels @@@@@@@@@@@@@@@@@@@@@@@@@@@@########:### ONE LINE

 | @@@@@@@@@@@ chrominance @@@@########:### OF COLOR

 | @@@@@@@@@@@@@@@@@@@@@@@@@@@@########:### /

 black @@@@@@@@@@@@@@@@@@@@@@@@@@@@########:###/

 / / / / / / / / / /: /

 / / / / COLOR BIT MAP / / / : /

Document Source: atarimuseum.com

 / / / 324 PIXELS PER LINE / / V/ TO FORM

 /___/___/___/___/___/___/___/___/___/___/

 bright @@@@ ########

 ^ @@@@@@ @@@@ ########

 | @@@@@@ @@@@@@@@@@@@ ########## ONE LINE OF

 384 @@@@@@@@@@@@@@@@@@@@@@@@ ########## REAL TIME

 levels @@@@@@@@@@@@@@@@@@@@@@@@@@ ############ VIDEO

 | @@@@@@@@@@@@@@@@@@@@@@@@@@@@############

 dim @@@@@@@@@@@@@@@@@@@@@@@@@@@@############

 OMNI overlays intensity upon color to create the output.

Document Source: atarimuseum.com

 The 16 intensity levels per intensity-pixel can also be used for a

 a dynamically redefinable gray encoded character font. Instead of

 displaying hard-edged white characters on a black background, OMNI

 can produce soft-edged gray-level characters and overlay them upon

 a colored background to produce greater character recognition.

 +-----------+ +--------+

 | THRESHOLD | | |--+ ABCDEFGHIJKLMNOPQRSTUVWXYZ

 | AND |<-----| CAMERA | |<---- abcdefghijklmnopqrstuvwxyz

 | SAMPLE | | |--+ !@#$%^&*()_+~{}:"|<>?

 +-----------+ +--------+ 1234567890-=`[];'\,./

 |128X96X1

 |

 V

 +-----------------+ +--------+ +------------------+

 | HIGH RESOLUTION | | |8X6X4 | LOW RESOLUTION |

 | BLACK/WHITE |----->| FILTER |----->| GRAY-ENCODED |

 | BIT MAP | | | | INTENSITY STAMPS |

 +-----------------+ +--------+ +------------------+

 ________________ _______________/ |

 \/ |

 PRE-PROCESSING BY GRAPHICS DESIGNER V

 +-----------+

 ABCDEFGHIJKLMNOPQRSTUVWXYZ | |

 abcdefghijklmnopqrstuvwxyz <-----| OMNI |

 !@#$%^&*()_+~{}:"|<>? | |

 1234567890-=`[];'\,./ +-----------+

 Creation of a gray-encoded font from a camera input.

 With gray-encoded characters stored in the intensity-pixel stamps

 maps it may be possible to produce readable 80 character text on a

 standard broadcast TV. This intriguing possibility and some comp-

 lications will be explored further in the next section.

Document Source: atarimuseum.com

Document Source: atarimuseum.com

 Part 2 -- Physical Dot Resolution 1.2

 The previous discussion accurately presented the electrical resol-

 uiton limits of NTSC transmission and reception. One would think

 that these should be the only limits upon resolution of a graphics

 image but, unfortunately, there can be a mechanical limit as well.

 Along the inner surface of the TV screen there lies a metal plate,

 called the shadow mask, which is perforated by thousands of holes

 (or slots). Electrons fired from the color guns must pass through

 these gaps to reach the screen. The mask's function is to isolate

 the colored dots (or stripes) from one another so that stray elec-

 trons intended to excite one dot are prevented from striking its

 neighbors. This has the effect of sharpening what would otherwise

 be a somewhat fuzzy image. In analog TV the shadow mask does not

 degrade the intended image, but in digital TV the shadow mask can

 present a problem that I call the "shooting gallery".

 Physical Dot Resolution -- The Shooting Gallery 1.2.1

 Imagine that you are at a shooting gallery which has several hun-

 dred uniformly spaced targets continuously parading from right to

 left at a uniform rate. You have two guns available, a low resol-

 ution shotgun and a high resolution rifle. There is one catch. The

 guns cannot be turned. They only point straight ahead.

 You select the shotgun and fire. It's easy. Four targets are

 knocked down. No challenge here. You can fire whenever you want

 and you hit four targets every time. No great resolution, though.

 Obviously if you want to hit just one target you have to switch to

 the rifle; now comes the challenge. Not being able to aim to left

 or right, you have to time your shots carefully. You find that the

 task requires you to establish a rhythm to your firing. Too fast

 or too slow a rate results in hit-hit-miss-hit-hit-miss... or some

 such pattern. After spending ten dollars you establish the right

Document Source: atarimuseum.com

 cadence and mow down the entire row. The barker hands you a three

 dollar stuffed animal and asks you to move on.

 So you go to the next gallery. You spot a passing friend and say,

 "Hey! Watch this." Using the same rhythm you established at the

 last booth you time you first shot just right and continue firing.

 Hit-hit-miss ! Your friend walks away chuckling. They tricked you

 of course. This booth requires a unique cadence. The targets are

 not spaced the same as they were at the last booth, that is, their

 pitch is different. Had you used the shotgun at both, chances are

 you wouldn't have noticed this discrepancy, but with the rifle it

 is obvious.

Document Source: atarimuseum.com

 In TV, the targets are the holes in the shadow mask through which

 the electrons must pass. The rate at which the string of targets

 moves is a constant, one full line in 54.2 micro-seconds, but the

 spacing (pitch) between targets and the total number of targets is

 different from one size of TV to another and from one manufacturer

 to another for equally sized TVs. For low resolution systems (the

 shotgun), timing is not as critical as for high resolution systems

 (the rifle).

 Physical Dot Resolution -- Conclusion 1.2.2

 If a high resolution digital graphics system uses one, fixed pixel

 frequency, the picture that looks fine on one TV may have distinct

 moire interference patterns on another. These moire patterns form

 as a result of multiple hits on the same target. An example might

 help here. Below is a chart of some common RCA video tubes.

 SIZE PART NUMBER ELEMENT TYPE PITCH ELEMENTS/LINE

 ----- ----------- ------------ ----- -------------

 25 in. 25VCZP22 DOT .66 mm. 769

 21 21VBEP22 DOT .66 646

 19 19VEDP22 DOT .61 633

 19 19VEJP22 STRIPE .826 467

 17 17VAYTC02 STRIPE .826 418

 15 15VAETC02 STRIPE .826 369

 Suppose that a high resolution graphics system produces 640 pixels

 per line (ie, the trigger is pulled on the hypothetical rifle 640

 times) on a 19 inch dot matrix TV tube (with 633 targets). It is

 obvious that there will necessarily be seven double hits per line.

 Each double hit will be flanked by a number of semi-double hits to

 either side. In fact, there will be seven groups of double hits

 flanked by semi-double hits in each line that forms the 480 lines

 of the screen. Taken en masse across all 480 lines they will tend

 to form a visually displeasing pattern. This is the moire pattern

Document Source: atarimuseum.com

 referred to. It will appear as more or less vertical bands on the

 screen. This moire pattern manifests itself as an indestinctness

 of edge where the moire and an object coincide. It is most notic-

 able when attempting to display text as an apparent subpixel shift

 in certain character positions. This moire effect will be present

 even when a monitor is used (as the owners of Apple 80 column text

 cards have discovered). Using a tunable pixel clock to match the

 number of shots to the number of targets will eliminate moire for

 most televisions.

Document Source: atarimuseum.com

 Physical Dot Resolution -- OMNI 1.2.3

 OMNI uses a software controllable pixel clock which will minimize

 the "shooting gallery" moire. The viewer will simply 'focus' the

 screen through an interactive software routine. The alternative,

 as I have previously stated, is to force the consumer to provide a

 high resolution monitor. OMNI is the only system that I have seen

 which would allow a variable pixel rate.

Document Source: atarimuseum.com

 Part 3 -- Color Resolution 1.3

 Color resolution refers, not to size, but to the degree to which

 colors differring only slightly in hue and brightness are created

 by the graphics hardware and detected by the human eye.

 Color Resolution -- Selection of the Palette 1.3.1

 The phenominon of vision depends upon two types of eye cells: rods

 and cones. The rods, which are sensitive to variations in bright-

 ness, are most discriminating if the brightness variations happen

 to be colored green. Thus, TV uses green to carry the majority of

 luminance information (59%). The cones detect variations in hue.

 It so happens that their hue descrimination is keenest in orange.

 Therefore, a video system should produce greens, reds and yellows

 with the highest resolution possible.

 What about blues? As it turns out, the spectrum from cyan through

 blue to magenta is the lowest resolution region for both luminance

 and chrominance. So any good video system should not transmit the

 blues with the highest spectral resolution. In other words, there

 should be many more hues of reds, yellows and greens available to

 the graphic artist than cyans, blues and magentas. Unfortunately,

 Atari's present products give equal weight to all colors. Hence,

 its palette is dominated by almost indistinguishable hues of blue.

 Color Resolution -- Shading & Color Tracking 1.3.2

 Color shading on a monitor is an easy task. Equal amounts of red,

 blue and green can be added to the basic color to produce a shade

 of that color, but adding luminance to a broadcast TV will create

 a pastel which tends toward blue or has a blueish semi-tone added.

 To counter this tendency, the chrominance signal must be increased

 proportionately. Technically speaking, this compensation ensures

Document Source: atarimuseum.com

 a constant percentage of color saturation throughout the range of

 shades. Atari's present products don't make this compensation, so

 oranges go to pink, reds go to pale magenta, etcetera.

 A television station transmits three signals: LUMinance and two

 chrominance Phasers, calculated like this:

 CAMERA +--> R G B

 +-------+ | X 59% X 31% X 10%

 | Red | | ----- ----- -----

 | Green |----+ RLUM + GLUM + BLUM = LUMinance

 | Blue | |

 +-------+ | | TRANSMITTER

 +--> R B | +---------+

 - LUM - LUM <---+--->| LUM |

 ----- ----- | |

 Phaser1 Phaser0 -------->| P0, P1 |

 +---------+

Document Source: atarimuseum.com

 The TV decodes the primaries from these three quantities by rev-

 ersing the mathematics like this:

 +--> P0 P1

 RECEIVER +--> + LUM + LUM

 +-----+ | ----- -----

 | P1 | | B R ------------------+

 | P0 |--+ | PICTURE TUBE

 | LUM | | | _____

 +-----+ | B R <-----------------+ / |

 V X 10% X 31% | _/ |

 ----- ----- +-->| Red |

 LUM - BLUM - RLUM = GLUM ---+ +-->| Blue |

 | | |

 +--------------------+ +-->|_ Green |

 | | \ |

 +--> GLUM / 59% = G --+ _____!

 As an example, to create an orange let R,G,B = {1,.5,0}. Then

 using the transmitter calcuation proceedures above:

 LUM = .605 P1 = .395 P0 = -.605

 And applying the receiver equations we see:

 R,G,B = {1,.5,0} = orange.

 Now to create an orange with twice the luminance

 The correct way is to double The present Atari way is to

 LUM, P1 & P0 double LUM but not P1 & P0

 LUM' = 2LUM = 1.21 LUM' = 2LUM = 1.21

 P1' = 2P1 = .79 P1' = P1 = .395

 P0' = 2P0 = -1.21 P0' = P0 = -.605

Document Source: atarimuseum.com

 The TV decodes and displays:

 R',G',B' = {2,1,0} = orange R',G',B' = {1.6,1.1,.6} = pink !!

Document Source: atarimuseum.com

 Color Resolution -- OMNI 1.3.3

 OMNI will generate and display more colors with fewer parts than

 any other graphics system. It generates colors mathematically to

 simulate the output of a 203 stage delay line, but without a delay

 line or baseband modulator. The color palette contains the mathe-

 matical description of one cycle of each of almost 2800 colors for

 use by color-pixels (324 per line) and OMNI will generate constant

 saturation throughtout all shades produced while overlaying color-

 pixels with intensity-pixels (648 per line) as they perform their

 edge smoothing and texturing jobs. OMNI will mix in video disk or

 other electronic sources and sychronize to their signals. OMNI is

 made for the broadcast television medium.

 Atari's present products allow 16 colors to be simultaneously dis-

 played. The market demands more. There are proposed systems that

 would display up to 256 colors. Is that enough? To answer that

 question, one must calculate how many hues and shades 256 colors

 really represent. To illustrate, here is a rundown of the colors

 OMNI can produce contrasted with the colors which can be produced

 by the traditional approach:

 OMNI APPROACH TRADITIONAL APPROACH

 5 bits of LUMinance 3 bits of red

 4 bits of Phaser0 3 bits of green

 5 bits of Phaser1 2 bits of blue

 NUMBER OF NUMBER OF NUMBER OF NUMBER OF

 HUE HUES COLORS (%) HUES COLORS (%)

 ------ --------- ------------- --------- -------------

 gray 1 24 (0.9) 1 4 (1.6)

 red 42 689 (24.7) 17 47 (18.4)

 yellow 38 524 (18.7) 17 49 (19.1)

 green 47 595 (21.3) 17 47 (18.4)

 cyan 26 390 (13.9) 14 38 (14.8)

Document Source: atarimuseum.com

 blue 26 323 (11.6) 12 34 (13.3)

 magenta 23 249 (8.9) 13 37 (14.4)

 --- ------------ -- ------------

 203 2794 (100.0) 91 256 (100.0)

 X 16 intensities/color

 44,704 color & intensity combinations

 13.76 shades per hue 2.81 shades per hue

 65% in red-yellow-green 56% in red-yellow-green

 output is composite video output is RGB

 OMNI's composite video output means that the signal is already of

 the proper type for application to a base-band monitor or standard

 broadcast TV while to the traditional approach one must add either

 a 91 tap delay line with decoder or a quadrature modulator. If an

 RGB output is mandatory, it can be created from the OMNI composite

 video by adding a simple resistor matrix and one amplifier. OMNI

 scales the chrominance & luminance proportionately when intensity

 is applied to create shading or an edge. As can be seen from the

 conclusion, this results in accurate color tracking.

Document Source: atarimuseum.com

 CHAPTER 2 -- THROUGHPUT AS IT RELATES TO GAMING 2

 Throughput is often a somewhat nebulus term. In gaming, it can be

 thought of as the upper bound on the playability of a game system;

 the amount of action and interaction in the most complex game that

 a system can support. It includes the creation and positioning of

 graphics, the evaluation of user responses, the interpretation of

 game rules or constructs, the creation of sounds, etc. If a game

 can be thought of as an artificial reality with which and within

 which one or more human players can interact, then throughput is a

 measure of the complexity of that reality and the richness of ex-

 perience available to those players.

 The meterstick with which the throughput of competing game systems

 can be measured and compared is the complexity of games which each

 will support. If one game system can 'play' a certain game that

 another cannot, the former system can be proclaimed as superior to

 the later. However, such a benchmark game cannot exist during the

 development of the competing systems (according to game designers,

 such a benchmark game will never exist), so the solution to the

 paradox of how to judge the puddings before they have been baked

 is obviously not in the tasting, it lies in a comparison of their

 recipes. Here are two important ingredients:

 Maximizing CPU Timespace -- the percentage of CPU time available

 for game play and

 Minimizing Graphics Overhead -- the percentage of CPU time spent

 tending to graphics tasks.

 Part 1 -- Maximizing CPU Timespace 2.1

 The most powerful graphics hardware will not appreciably increase

 throughput if it obtrusively halts the CPU for significant amounts

 of time. In fact, obtrusive graphics hardware can so drastically

Document Source: atarimuseum.com

 decrease game play that is a liability. Three tasks which relate

 to graphics which can impact the CPU timespace are:

 Loading graphics,

 Running graphics and

 Refreshing graphics memory.

 Maximizing CPU Timespace -- Loading Graphics 2.1.1

 A graphic consists of a parameter block: object position, format

 code, etc., and a data block: graphic format, colors, intensities,

 etc. A block can either be passed through CPU registers or DMAed

 (direct memory accessed).

Document Source: atarimuseum.com

 Passing graphic blocks through CPU registers is the most invasive

 method of loading graphics. The CPU must get the block from what-

 ever mass storage is used and then load it into the GPU (Graphics

 Processing Unit). Of course, this must be done one word at a time

 with the CPU controlling the source and destination addresses and

 associated byte or word counter. This scheme has one advantage.

 Since the CPU is intimately involved in the loading procedure, it

 can alter a block on the fly as it is loaded. However, since this

 capability does not lend itself to structured programming, ie, the

 creation of programs constructed from functionally differentiated

 routines, it is of dubious utility. Register passing has an over-

 riding disadvantage, though. It takes approximately twice as long

 to accomplish the load as DMA does.

 There are two types of DMA: transparent and cycle stealing. With

 transparent DMA, the CPU is unaware of DMA activity. The transfer

 occurs during cycles in which the CPU is busy performing internal

 operations such as register-register transfers, calculations and

 the like. Of course, there must be a way for the CPU to tell the

 DMA controller when it does not need the memory and the length of

 time the memory will be free. Many new, powerful microprocessors

 operate essentially asynchonously to memory so that this criteria

 cannot be easily met. Also transparent DMA has two inherent draw-

 backs which require some careful thought to understand.

 First, since the memory transfers are transparent, the CPU cannot

 automatically know when DMA is done. So there is a possibility it

 may try to alter the loaded data before it is actually there, that

 is, before the load has finished. The common way to guard against

 this is to have the CPU poll the DMA controller to ascertain when

 it has finished. While polling, though, the CPU is not doing any

 constructive work, thus negating the logic of transparent DMA.

 The second drawback is very esoteric but of paramount importance.

 As viewed from the CPU's perspective, transparent DMA, is an asyn-

 chronous operation, therefore, it adds unpredictability that real

Document Source: atarimuseum.com

 time programming, ie, games, cannot easily cope with. The relia-

 bility of a game must be a major consideration for an unreliable

 game is a bad product. Game designers prefer a DMA that requires

 the allocation of a known period of enforced CPU inactivity. Reg-

 ister passing ensured this but was too slow. A good compromise is

 cycle-stealing DMA.

 In cycle-stealing DMA, the DMA controller halts the CPU (steals a

 cycle) for each word that is transferred. While a block is being

 transferred en masse the CPU is halted for the duration. But the

 CPU knows how long that is. It is "blocklength" number of cycles.

 Cycle-stealing DMA has the speed of direct memory access with the

 predictability of register passing.

Document Source: atarimuseum.com

 Maximizing CPU Timespace -- Running Graphics 2.1.2

 While it's desirable to halt the CPU while loading graphics, it's

 disruptive to do it every time the GPU access those graphics, as

 in Atari's present products, and it's disasterous to halt the CPU

 during the entire active video screen time, as has been proposed.

 I shall explain. Even though the CPU controls the flow of infor-

 mation to the graphics hardware, it does not know how complex the

 resulting images will be or how much time it will take the GPU to

 create them or how many memory accesses the GPU will have to make.

 In other words, the actual creation of the graphics is an asynch-

 ronous operation with which the CPU need not be concerned. It is

 for this reason that special purpose graphics hardware exists.

 To be truely worth the expense, the generation of graphics should

 be a parallel process that the CPU can set and forget. This set &

 forget capability absolutely dictates that the graphics memory be

 separate from main system memory so that the GPU will not halt the

 CPU for unknown periods of time. The following time lines graph-

 ically illustrate this non-invasive set & forget graphics, an in-

 vasive architecture in which memory is shared and a very invasive

 scheme in which the CPU is denied the use of memory during active

 screen time.

 NON-INVASIVE SET & FORGET GRAPHICS

 :<----- one full screen ---->:

 : :

 CPU Timespace =======PROCESS=PROCESS=PROCESS==>

 (over 90% of total time) : ^^ ^|| ^| | |||^^ ||^|^ :

 (known lengths of time) : || ||| || | ||||| ||||| :

 : || |playing the game||| :

 : || ||| || | ||||| ||||| :

 : || |vv |v v vvv|| vv|v| :

Document Source: atarimuseum.com

 System Memory Timespace ==BUSY=WORKING=WORKING=WORKING==>

 |||| :

 load :

 |||| :

 vvvv :

 Graphics Memory Timespace ==BUSY=WORKING=WORKING=WORKING==>

 : ||||| || | || | ||| || :

 : |creating the graphics| :

 : ||||| || | || | ||| || :

 : vvvvv vv v vv v vvv vv :

 GPU Timespace =======PROCESS=PROCESS=PROCESS==>

Document Source: atarimuseum.com

 INVASIVE GRAPHICS

 CPU Timespace ==PROCE=====E==S=S===P=R===O==C=>

 (halted by GPU accesses) ^^ ^| | ^ | | | | |:

 (unknown bits & pieces || || | | | | | | |:

 of time) || |p la y in g t h e:

 || || | | | | | | |:

 || |v v | v v v v v:

 System Memory Timespace ==WORKING=WORKING=WORKING=WORKI=>

 : ||||| || | || | ||| || :

 : |creating the graphics| :

 : ||||| || | || | ||| || :

 : vvvvv vv v vv v vvv vv :

 GPU Timespace =======PROCESS=PROCESS=PROCESS==>

 VERY INVASIVE GRAPHICS

 CPU Timespace ==PROC==========================>

 (7% of total time) ||^^ :

 (halted during active |||| :

 screen time) |||p :

 |||| :

 vv|| :

 System Memory Timespace ==WORKING=WORKING=WORKING=WORKI=>

 : ||||| || | || | ||| || :

 : |creating the graphics| :

 : ||||| || | || | ||| || :

 : vvvvv vv v vv v vvv vv :

 GPU Timespace ======PROCESS=PROCESS=PROCESS===>

 Maximizing CPU Timespace -- Refreshing Graphics Memory 2.1.3

 Dynamic memory is cheaper than static or pseudo-static memories.

 For that reason, it is preferred. But dynamic memory requires a

Document Source: atarimuseum.com

 refresh cycle every 4 milli-seconds to maintain its data. This

 refresh accounts for approximately 0.4% of the CPU timespace, a

 small overhead. Since system memory usually also includes some

 dynamic memory, for the same reason, then it would make sense to

 refresh both simultaneously. Failing that, the graphics memory

 should be transparently refreshed by the graphics hardware or by

 the memory controller.

 Maximizing CPU Timespace -- Conclusion 2.1.4

 To maximize CPU timespace, then, one should minimize the numbers

 of asynchronous events that it has to deal with. To that end, a

 graphics system should

 1, have graphics memory separate from the system memory which is

 either transparently refreshed or is refreshed simultaneously

 with system memory refresh and,

 2, use cycle-stealing DMA to load graphics.

Document Source: atarimuseum.com

 Maximizing CPU Timespace -- OMNI 2.1.5

 OMNI has been designed to utilize dynamic RAM for graphics that is

 separate from main system RAM. This graphics RAM is loaded, upon

 CPU initiation, by means of cycle-stealing DMA. It is refreshed

 simultaneously with system RAM refresh. In this way, the CPU is

 running and working all the time except during those predictable

 lengths of time when DMA occurs. Since the programmer will usually

 initiate DMA during vertical blanking, he or she should have the

 entire screen time (93% of total time) in which to do game play.

 Furthermore, the programmer has access to the graphics RAM all of

 the time - even during the active screen time - and can, there-

 fore, read or write graphics whenever desired. Since the graphics

 hardware must have unrestricted access rights during screen time,

 CPU requests for reads from or writes to graphics RAM will be on a

 lower priority catch as catch can basis. If this is unacceptable,

 the programmer should retain copies of critical parameters in main

 system RAM for reference and leave graphics RAM undisturbed during

 the active screen at his or her option.

Document Source: atarimuseum.com

 Part 2 -- Minimizing Graphics Overhead 2.2

 Splendid graphics can be produced using a bit mapped screen and no

 specialized graphics hardware. The process of forming an image of

 many objects at once on a simple bit mapped screen is slow, soft-

 ware intensive and very tedious. Independent motion objects gen-

 erated by specialized graphics hardware make the creation of fast

 moving objects a manageable proposition. Atari's present products

 utilize motion object generators and there is every reason to con-

 tinue that development. Assuming that this trend is to continue,

 it is of further advantage to relieve the CPU of as many graphics

 tasks as possible relating to the creation and use of independent

 motion objects. These tasks typically include:

 Positioning graphics horizontally (in X),

 Positioning graphics vertically (in Y),

 Prioritizing graphics visually by depth (in Z),

 Scaling & zooming graphics,

 Rotating, inverting & reflecting graphics,

 Clipping partially off-screen graphics,

 Stenciling one graphics object by another,

 Detecting collisions,

 Creating animation sequences,

 Reusing graphics object generators,

 Changing the color palette and

 Creating special effects.

 Minimizing Graphics Overhead -- Positioning Graphics 2.2.1

 In a three-dimemsional graphics system, each object displayed must

 be positioned horizontally, vertically and by screen depth, ie, in

 X, Y & Z. There are two alternative schemes. In one, the initial

 position is loaded when the object is created. The object is then

 programmatically moved about the screen by means of an associated

Document Source: atarimuseum.com

 pointing vector which can describe either its velocity and direc-

 tion or its acceleration and direction. The hardware automatical-

 ly updates its position at the beginning of each screen based upon

 its position during the previous screen and the magnitude and the

 direction of its pointing vector. In the second, simpler method,

 the CPU maintains the pointing vector in software and directly up-

 dates the object's position at the beginning of each screen.

 Although the vector method sounds attractive, it is too automatic.

 The game program can easily lose track of objects. Though a means

 of reading an object's position could be provided, this would be a

 classic case of diminishing returns. It has been established that

 it is easier to compute and load object positions in software than

 to track and control self-motivated objects. This also results in

 more compact and efficient hardware. Of course, it should be pos-

 sible to change one position coordinate, say X, without having to

 reload unchanged coordinates, Y & Z in this case.

Document Source: atarimuseum.com

 It should also be possible to group objects together in formation

 and then position then en masse instead of individually. This can

 be easily done by subdividing an object's coordinates into the sum

 of positions and offsets. Thus, COORDINATE(X,Y,Z) = {X,Y,Z} where

 |X| = X-POSition + X-OFFset,

 |Y| = Y-POS + Y-OFF and

 |Z| = Z-POS + Z-OFF are the magnitudes of X, Y & Z,

 is equivalent to COORDINATE'(POS,OFF) = POS + OFF where

 POS(X,Y,Z) = {X-POS,Y-POS,Z-POS} and

 OFF(X,Y,Z) = {X-OFF,Y-OFF,Z-OFF} are vector quantities.

 POSition is then the coordinates of the formation's common refer-

 ence point and OFFset is the coordinates of a particular member of

 the formation relative to POSition.

 Schematically a position relative offset system works like this:

 origin of the reference point OBJECT2

 coordinate system | /

 | v /

 v / ---------X-OFF1---------+

 / *---X-OFF2---+ / |

 *------X-POS------+ / | Z-OFF2 | OBJECT1

 | | / | / | /

 | | / Y-OFF2/ Y-OFF1 /

 | Z-POS | / |Z-OFF1

 Y-POS / |/ | /

 | / + |/

 | / +

 |/

 +

Document Source: atarimuseum.com

 Objects 1 & 2 can be moved relative to each other by manipulating

 OFFsets and can be moved together, in formation, by changing POS-

 ition. This way a super-object consisting of 20 sub-objects can

 be moved, by POSition, with only one to three stores instead of

 the 20 to 60 stores that would otherwise be required for that many

 objects.

Document Source: atarimuseum.com

 Programmatically, 'n' objects point to a common parameter area

 containing their POSition, thus:

 +--------------------- SUPER-OBJECT -----------------------+

 | +-- OBJECT1 --+ +-- OBJECT2 --+ +-- OBJECTn --+ |

 | | X-OFF | | X-OFF | | X-OFF | |

 | | Y-OFF | | Y-OFF | ... | Y-OFF | |

 | | Z-OFF | | Z-OFF | | Z-OFF | |

 | | POINTER |-+ | POINTER |-+ | POINTER |-+ |

 | +-------------+ | +-------------+ | +-------------+ | |

 | | | | |

 | +-------+ +--------+ | |

 | | | +--------------------------+ |

 | | | | |

 | V V V |

 | +---- POS ----+ |

 | | X-POS | |

 | | Y-POS | |

 | | Z-POS | |

 | +-------------+ |

 +--+

 It should be possible to create any number of these super-objects.

 Perspective is the intentional distortion of the display space to

 achieve an enhanced illusion of depth. It is acheived by adding a

 differential offset to the coordinates which would otherwise pro-

 duce a non-perspective view. The problems encountered are formid-

 able. Besides the obvious difficulties, there is a subtle aspect.

 If the TV is to act as a window into the display space, then the

 player's field of view should be taken into account when figuring

 perspective. The field of view is determined by two measurements:

 the distance from the player to the screen and the screen's size.

 The player could enter these parameters at the start of the game.

 They can then be used to scale the apparent depth of the display

Document Source: atarimuseum.com

 space to give it a natural aspect. This is important as it should

 be done to avoid tunnel-vision, that is, the illusion that the TV

 screen is a 'lens' with a different perspective than reality. To

 appreciate this effect, play any first-person space game on a six

 foot projection TV while sitting six feet away, a 55 degree field

 of view, and then play the same game while sitting three feet away

 from a 21 inch TV, a 30 degree field of view. Admittedly, this is

 a minor correction, but ascendancy in future markets may require

 such attention to detail. Perspective positioning in hardware is

 probably be too expensive and too inflexable; it is done best by

 the game designer in software.

 Finally, the coordinate system should be right-orthagonal, ie, it

 should have mutually perpendicular ordinates (the usual X,Y,Z type

 with which most people are familiar) rather than spherical or cyl-

 indrical ordinates (neither of which are really suited to rectang-

 ular TVs), which conforms to the right-hand convention for normal

 cartisian coordinate spaces (in which tightening a Z-axis aligned

 screw from above produces a sweep from Y to X) so that rotation in

 X, Y & Z will produce proper, not reversed, motion.

Document Source: atarimuseum.com

 Minimizing Graphics Overhead -- Display Prioritization 2.2.2

 If two or more objects are coincident in X and Y but overlap in Z,

 then it is logical that the most frontal of them would obscure the

 rest and be the only one displayed. Deciding which of them is in

 front is called display prioritization.

 Priority can be determined on an object basis or on an individual

 pixel basis. If it is done on an object basis, then all pixels in

 a particular object either have priority or don't have priority en

 masse. This is undesirable since as soon as one object overlapped

 another, even by one pixel, the anterior object would suddenly and

 completely disappear. To overcome this drawback, the obsured part

 of the anterior object could be lopped off in the data. But this

 would have no advantage, whatsoever, over a simple bit map. So to

 preserve the obvious advantage of independent motion objects, they

 must be capable of prioritizing themselves pixel by pixel.

 Pixel display prioritization can be accomplished in several ways.

 The best way is to have each object generator use its Z-coordinate

 as a weapon in a fight for display survival. The winner gains the

 right to display its pixel. On the very next pixel, the battle is

 repeated with more or fewer object generators joining in, depend-

 ing upon which of them have a pixel to output on that clock. And

 so on, pixel after pixel, for every pixel in the visible screen.

 This Z-combative method has one great advantage: the battle rages

 in parallel. It matters not whether there are two object genera-

 tors in the frey or two hundred. The length of time it takes for

 a winner to emerge is essentially constant. Also, the Z-combative

 method is self-maintaining, that is, when an object is assigned a

 new value of Z which moves it closer to the screen, it has simul-

 taneously been given a bigger weapon with which to do battle.

 A less desirable alternative assigns each object generator a fixed

 priority based upon its position in a serial hardware chain. This

Document Source: atarimuseum.com

 idea is passive, not combative. If the generator with the highest

 priority has no pixel to output, then it passes the display rights

 to the generator which has the next highest priority, and so on.

 As with all such serial chains, this one suffers from propagation

 delays that are additive. These delays limit the number of |||

 :� load : • � ||||

 :� vvvv :C Graphics Memory Timespace

==BUSY=WORKING=WORKING=WORKING==> • $: ||||| || | || | ||| || :$

 : |creating the graphics| :& : ||||| || | || | ||| || :+

 : vvvvv vv v vv v vvv vv :• < GPU Timespace

=======PROCESS=PROCESS=PROCESS==>�

Document Source: atarimuseum.com

• INVASIVE GRAPHICS < CPU Timespace

==PROCE=====E==S=S===P=R===O==C=>B (halted by GPU accesses) ^^ ^| | ^ | | | |

|:A (unknown bits & pieces || || | | | | | | |:• . of time) || |p

la y in g t h e:- || || | | | | | | |:• -

|| |v v | v v v v v:• C System Memory Timespace
==WORKING=WORKING=WORKING=WORKI=> • & : ||||| || | || | ||| || :&

 : |creating the graphics| :& : ||||| || | || | ||| ||

:- : vvvvv vv v vv v vvv vv :• < GPU Timespace
=======PROCESS=PROCESS=PROCESS==> # VERY INVASIVE GRAPHICS • <

CPU Timespace ==PROC==========================>((7% of total time) ||^^

:+ (halted during active |||| : • � screen time) |||p

 : • � |||| :� vv||

 :C System Memory Timespace ==WORKING=WORKING=WORKING=WORKI=> • & :

||||| || | || | ||| || :& : |creating the graphics| :&

 : ||||| || | || | ||| || :- : vvvvv vv v vv v vvv vv

: • < GPU Timespace ======PROCESS=PROCESS=PROCESS===> > Maximizing CPU Timespace --

Refreshing Graphics Memory 2.1.3 H Dynamic memory is cheaper than static or pseudo-

static memories.H For that reason, it is preferred. But dynamic memory requires aH

refresh cycle every 4 milli-seconds to maintain its data. ThisH refresh accounts for

approximately 0.4% of the CPU timespace, aH small overhead. Since system memory usually

also includes someH dynamic memory, for the same reason, then it would make sense toH

refresh both simultaneously. Failing that, the graphics memoryH should be transparently

refreshed by the graphics hardware or by- the memory controller. 0 Maximizing CPU

Timespace -- Conclusion 2.1.4 H To maximize CPU timespace,

hen, one should minimize the numbersH of asynchronous events that it has to deal with. To

that end, a- graphics system should H 1, have graphics memory separate from the

system memory which isH either transparently refreshed or is refreshed simultaneously*

with system memory refresh and,3 2, use cycle-stealing DMA to load graphics. • �

Document Source: atarimuseum.com

• * Maximizing CPU Timespace -- OMNI 2.1.5 J OMNI has been designed

to utilize dynamic RAM for graphics that isJ separate from main system RAM. This graphics

RAM is loaded, uponJ CPU initiation, by means of cycle-stealing DMA. It is refreshedJ

simultaneously with system RAM refresh. In this way, the CPU isJ running and working all

the time except during those predictableJ lengths of time when DMA occurs. Since the

programmer will usuallyJ initiate DMA during vertical blanking, he or she should have theJ

entire screen time (93% of total time) in which to do game play.J Furthermore, the

programmer has access to the graphics RAM all ofJ the time - even during the active screen

time - and can, there-J fore, read or write graphics whenever desired. Since the graphicsJ

hardware must have unrestricted access rights during screen time,J CPU requests for reads

from or writes to graphics RAM will be on aJ lower priority catch as catch can basis. If this

is unacceptable,J the programmer should retain copies of critical parameters in mainJ

system RAM for reference and leave graphics RAM undisturbed during/ the active screen at his

or her option. • �

Document Source: atarimuseum.com

• 6 Part 2 -- Minimizing Graphics Overhead 2.2 C Splendid graphics

can be produced using a bit mapped screen and no • J specialized graphics hardware. The process
of forming an image ofJ many objects at once on a simple bit mapped screen is slow, soft-J

ware intensive and very tedious. Independent motion objects gen-J erated by specialized

graphics hardware make the creation of fastJ moving objects a manageable proposition. Atari's

present productsJ utilize motion object generators and there is every reason to con-J

tinue that development. Assuming that this trend is to continue,J it is of further advantage

to relieve the CPU of as many graphicsJ tasks as possible relating to the creation and use of

independent7 motion objects. These tasks typically include: • 2 Positioning

graphics horizontally (in X),0 Positioning graphics vertically (in Y),1

 Prioritizing graphics visually by depth (in Z), • $ Scaling & zooming graphics,3

 Rotating, inverting & reflecting graphics, • 0 Clipping partially off-screen

graphics,3 Stenciling one graphics object by another, • - Detecting

collisions,& Creating animation sequences,, Reusing graphics object generators,'

 Changing the color palette and• " Creating special effects. C Minimizing

Graphics Overhead -- Positioning Graphics 2.2.1• J In a three-dimemsional graphics
system, each object displayed mustJ be positioned horizontally, vertically and by screen

depth, ie, inJ X, Y & Z. There are two alternative schemes. In one, the initialJ

position is loaded when the object is created. The object is thenJ programmatically moved

about the screen by means of an associatedJ pointing vector which can describe either its

velocity and direc-J tion or its acceleration and direction. The hardware automatical-J

ly updates its position at the beginning of each screen based uponJ its position during the

previous screen and the magnitude and theJ direction of its pointing vector. In the second,

simpler method,J the CPU maintains the pointing vector in software and directly up-D

dates the object's position at the beginning of each screen. J Although the vector method

sounds attractive, it is too automatic.J The game program can easily lose track of objects.

Though a meansJ of reading an object's position could be provided, this would be aJ

classic case of diminishing returns. It has been established thatJ it is easier to compute

and load object positions in software thanJ to track and control self-motivated objects. This

also results inJ more compact and efficient hardware. Of course, it should be pos-J

sible to change one position coordinate, say X, without having to9 reload unchanged

coordinates, Y & Z in this case.• �

Document Source: atarimuseum.com

• J It should also be possible to group objects together in formationJ and then
position then en masse instead of individually. This canJ be easily done by subdividing an

object's coordinates into the sumJ of positions and offsets. Thus, COORDINATE(X,Y,Z) =

{X,Y,Z} where % |X| = X-POSition + X-OFFset,• |Y| = Y-POS + Y-OFF and<
 |Z| = Z-POS + Z-OFF are the magnitudes of X, Y & Z, ? is equivalent to

COORDINATE'(POS,OFF) = POS + OFF where• - POS(X,Y,Z) = {X-POS,Y-POS,Z-POS} and• @
 OFF(X,Y,Z) = {X-OFF,Y-OFF,Z-OFF} are vector quantities. J POSition is then the

coordinates of the formation's common refer-J ence point and OFFset is the coordinates of a

particular member of+ the formation relative to POSition. • H Schematically a position
relative offset system works like this: 9 origin of the reference point

OBJECT2• * coordinate system | /� | v

/ • * v / ---------X-OFF1---------+< / *---X-

OFF2---+ / |H *------X-POS------+ / | Z-OFF2 | OBJECT14

| | / | / | /3 | | / Y-OFF2/

Y-OFF1 / • 4 | Z-POS | / |Z-OFF17 Y-POS /

|/ | / • / | / + |/ • . | /

+

Document Source: atarimuseum.com

 |/ +• J Objects 1 & 2 can be moved relative to each
other by manipulatingJ OFFsets and can be moved together, in formation, by changing POS-J

ition. This way a super-object consisting of 20 sub-objects canJ be moved, by POSition,

with only one to three stores instead ofJ the 20 to 60 stores that would otherwise be

required for that many� objects.�

Document Source: atarimuseum.com

• F Programmatically, 'n' objects point to a common parameter area(containing
their POSition, thus: = +--------------------- SUPER-OBJECT -----------------------+• D |
+-- OBJECT1 --+ +-- OBJECT2 --+ +-- OBJECTn --+ |D | | X-OFF | | X-OFF

| | X-OFF | |D | | Y-OFF | | Y-OFF | ... | Y-OFF | |D

| | Z-OFF | | Z-OFF | | Z-OFF | |D | | POINTER |-+ | POINTER

|-+ | POINTER |-+ |D | +-------------+ | +-------------+ | +-------------+ | |>

| | | | |> | +-------+ +-------

-+ | |7 | | | +--------------------------+ | • " |
 | | | |" | V V V

|& | +---- POS ----+ |& | | X-POS |

 |& | | Y-POS | |& | |

Z-POS | | | +-------------+ | • D +------------
--+ J It should be possible to create any number

of these super-objects. J Perspective is the intentional distortion of the display space

toJ achieve an enhanced illusion of depth. It is acheived by adding aJ differential

offset to the coordinates which would otherwise pro-J duce a non-perspective view. The

problems encountered are formid-J able. Besides the obvious difficulties, there is a subtle

aspect.J If the TV is to act as a window into the display space, then theJ player's

field of view should be taken into account when figuringJ perspective. The field of view is

determined by two measurements:J the distance from the player to the screen and the screen's

size.J The player could enter these parameters at the start of the game.J They can

then be used to scale the apparent depth of the displayJ space to give it a natural aspect.

This is important as it shouldJ be done to avoid tunnel-vision, that is, the illusion that

the TVJ screen is a 'lens' with a different perspective than reality. ToJ appreciate

this effect, play any first-person space game on a sixJ foot projection TV while sitting six

feet away, a 55 degree fieldJ of view, and then play the same game while sitting three feet

awayJ from a 21 inch TV, a 30 degree field of view. Admittedly, this isJ a minor

correction, but ascendancy in future markets may requireJ such attention to detail.

Perspective positioning in hardware isJ probably be too expensive and too inflexable; it is

done best by& the game designer in software. J Finally, the coordinate system should

be right-orthagonal, ie, itJ should have mutually perpendicular ordinates (the usual X,Y,Z

typeJ with which most people are familiar) rather than spherical or cyl-J indrical

ordinates (neither of which are really suited to rectang-J ular TVs), which conforms to the

right-hand convention for normalJ cartisian coordinate spaces (in which tightening a Z-axis

alignedJ screw from above produces a sweep from Y to X) so that rotation in; X, Y & Z

will produce proper, not reversed, motion. • �

Document Source: atarimuseum.com

• E Minimizing Graphics Overhead -- Display Prioritization 2.2.2• J If
two or more objects are coincident in X and Y but overlap in Z,J then it is logical that the

most frontal of them would obscure theJ rest and be the only one displayed. Deciding which

of them is in/ front is called display prioritization.• J Priority can be determined
on an object basis or on an individualJ pixel basis. If it is done on an object basis, then

all pixels inJ a particular object either have priority or don't have priority enJ

masse. This is undesirable since as soon as one object overlappedJ another, even by one

pixel, the anterior object would suddenly andJ completely disappear. To overcome this

drawback, the obsured partJ of the anterior object could be lopped off in the data. But

thisJ would have no advantage, whatsoever, over a simple bit map. So toJ preserve the

obvious advantage of independent motion objects, theyB must be capable of prioritizing

themselves pixel by pixel. J Pixel display prioritization can be accomplished in several

ways.J The best way is to have each object generator use its Z-coordinateJ as a weapon

in a fight for display survival. The winner gains theJ right to display its pixel. On the

very next pixel, the battle isJ repeated with more or fewer object generators joining in,

depend-J ing upon which of them have a pixel to output on that clock. AndJ so on,

pixel after pixel, for every pixel in the visible screen.J This Z-combative method has one

great advantage: the battle ragesJ in parallel. It matters not whether there are two object

genera-J tors in the frey or two hundred. The length of time it takes forJ a winner

to emerge is essentially constant. Also, the Z-combativeJ method is self-maintaining, that

is, when an object is assigned aJ new value of Z which moves it closer to the screen, it has

simul-E taneously been given a bigger weapon with which to do battle. • J A less
desirable alternative assigns each object generator a fixedJ priority based upon its position

in a serial hardware chain. ThisJ idea is passive, not combative. If the generator with the

highestJ priority has no pixel to output, then it passes the display rightsJ to the

generator which has the next highest priority, and so on.J As with all such serial chains,

this one suffers from propagationJ delays that are additive. These delays limit the number of

objectJ generators which can participate. Also, whenever an object passesJ another in

Z, so that it becomes closer to the screen, the entireJ parameter package of the passing

object and the passed object mustJ be interchanged. This is a serious software overhead.

This hand-J icap can be relieved somewhat by link-listing parameters, that is,J by

providing an indirect register within each object which pointsJ to its parameters. Then,

instead of interchanging the parameters,J the pointers are interchanged. This overhead was

not needed withJ Z-combative display prioritization. It is plain, then, that fixedJ

chain prioritization is inferior to Z-combative prioritization inJ speed, capacity and CPU

overhead. I will return to the subject ofJ fixed-chain -vs- Z-combative prioritization in the

section dealing, with the reuse of object generators.�

Document Source: atarimuseum.com

• J Another alternative method to assign pixel priority is through theJ color
palette. The idea here is simple: one color is assigned theJ highest priority, another color

is assigned next highest priority,J and so on. This color palette method is fast and straight

forwardJ but it obviously limits the way objects can use color. It has twoJ

interesting advantages, though: colors can be mixed directly with-J in the palette and special

effects can be created using the color,J or the lack of color, of overlapping objects. I

have more to say& about this in a later section. @ Minimizing Graphics Overhead --

Scaling & Zooming 2.2.3 J An object's Z-coordinate can be used for automatic scaling,

there-J by enhancing the three-dimensional effect. This scaling functionJ is truely

useful only if fractional values are allowed. To illus-J trate, imagine that an object is at

scale factor one. Each pixelJ of data that makes up that object is reproduced on the screen

full4 sized, ie, with one-to-one pixel correspond-A ance. If only integer scale

factors are al- +---+ • E lowed, then as the object moves toward the | |
1 • A screen, it would reach a point where scale +---+ • - factor would go to two. At

that point, the• A object would double in size. Each pixel of +-------+ • D data
would produce four pixels on the screen | |G causing the object to literally leap

out at | | 2 • D the viewer. At a scale factor of three, it | |D
would appear to jump out once again as its +-------+- size increased by half again. Not as

big a• D jump as before, but still quite abrupt. At +-----------+= scale factor
four, the object would jump 25% | | • = in size; at scale factor five, 20%; and so
| | • G on. This jumpping effect would not be tol- | | 3 • = erable
until the scale factor reached twenty | | • = (producing a 5% increase in size). But
by | | • D then each pixel of data would be replicated +-----------+4 400
times (20 times horizontally & 20 timesJ vertically); very low resolution, indeed.

Fractional scale factorJ would relieve the problem; the object could go from scale factor 12

to scale factors 1.1, 1.2, 1.3, and so on. J But even with fractional scale factors there

would still be severeJ problems. First, imagine that the scale factor goes from 1 to 1.1J

requiring an eight pixel object to generate a ninth pixel. WhichJ pixel should be repeated?

That depends upon whether the object isJ mostly color or mostly details and on where the

color/detail tran-J sitions occur in the string of eight pixels. Second, the decisionJ

as to which pixel to repeat is dependent upon its size. An objectJ which is small because it

is far away carries most of its recogni-J tion by its color. When the very same object is

closer and largerJ its detail will probably be its most important property. If theJ

wrong pixel is repeated, the object may very well take on a comp-J letely different

appearance. Only the graphic designer can make8 that decision for it is highly object

dependent.�

Document Source: atarimuseum.com

• J And third, since the object should double in size as the distanceJ between
it and the viewer is halved, the scale factor must be non-J linear. An approximation to this

non-linearity is to either shiftJ the scale factor (equivalent to division by two) or look it

up inJ a Z-coordinate to scale factor software conversion table. You mayJ have noted

that this scale factor adjustment is, in part, determ-J ined by the distance between the

object "and the viewer." It is aJ situation very similar to that outlined in perspective

positioningJ where the player's field of view was found to affect the apparentJ depth

of the display space. The differential offset applicable toJ the display space for

perspective postitioning and the scale fact-J or mentioned here are, essentially, the same

things, so that theJ player's field of view should be taken into account when figuring

zoom scale factor, also. J So scaling is a function of object size, the distribution of

colorJ and intensity across the object, its Z-coordinate, the player toJ TV distance

and the size of the screen. It is doubtful whether aJ single factor can, or should, be

devised which takes all this intoI account in hardware. In short, zooming is best done in

software.• N Minimizing Graphics Overhead -- Rotating, Inverting & Reflecting 2.2.4 J
Plane polygons can be represented parametrically or topologically.J With such descriptions as

a starting point, a generalized rotationJ algorithm can be a straight forward proposition,

but there is noJ single algorithm which will successfully rotate the complex, non-J

polygonal objects that will be in general use. Rotation is a fun-J ction of object size and

the distribution of color and intensityJ across the object. The problem is similar to that

encountered inJ zooming, outlined in the previous section. Since there exists noJ

single algorithm can successfully rotate all objects, it should be� handled in software. J

Reflection and inversion of graphics is another matter. GraphicsJ hardware should be

capable of flipping an object end-over-end orJ side-to-side. This will greatly simplify the

rotational task. X-J Y co-planer rotations could be generated for rotation angles fromJ

zero to 89 degrees: the first quadrant. The remaining three quad-J rants of rotation could

then be accomplished with combinations of6 hardware implimented reflection and inversion.�

Document Source: atarimuseum.com

• 8 Minimizing Graphics Overhead -- Clipping 2.2.5 J What should

happen if an object starts off-screen? Logically, theJ left side should not be seen and the

right side should extend intoJ the visible screen. Since it should be possible to create

objectsJ off-screen and then scroll them into the visible area, then logicJ dictates

that there be a boundary area to the left of the visibleJ screen that is as wide as the

widest object that can be created byJ the graphics system. Since permitting objects to be

the width ofJ the TV screen has an obvious advantage, this boundary area must beJ as

wide as the screen. This implys the existance of a virtual co-J ordinate space that is twice

as wide as the visible screen, thus: C <-- x negative x positive --> That part of the

object to• = +---------------+---------------+ the left of the TV screen• * | |

 | must be used up by the end* | | | of the blanking interval.>

| ***************** motion| This could be accomplished> | **** object ***** ----->|

 by "wasting" the pixels to8 | ***************** | the left of the screen at*

| | | a rate eight times higher* | | | than the

pixels would nor-* | | | mally be generated. If anD +--X-BOUNDARY--

-+-----SCREEN----+ X-boundary isn't provided,D <- horizontal -> <---- scan ----> the

graphics data must be? blanking time fiddled with, one line at• 9
9.3 54.2 a time, to make the object• 8 micro-seconds micro-seconds come

out right. J An analogous situation requires this virtual space to be twice as) high

as the visible screen, thus:• ' +--------------+ •̂ = ^ |

| | Those parts of the object• = | | Y | that

are above the screen • F y | ********** | vertical must be used up by the endF

 | ********** B blanking of the vertical blanking.C n | **********

D 1.2 This could be accomplished• D e | ********** R milli- by

"wasting" lines sixteenE g | * object * Y seconds times faster than they

are• C | ********** | | normally generated during• C
+--**********--+ X the active screen. With-• C | ********** |

| out such a Y-boundary, it• C y | ********** S scan will be

necessary to alter • C |motion| C time an object's length and its• C
p | | R 15.5 data address pointer on a• E o | v E milli-
 line by line basis to make• > s | E seconds the graphics come

out cor-* | | N | rectly.! v | |

| • ' +--------------+ v• �

Document Source: atarimuseum.com

• J Likewise, the virtual space should be twice as deep as the maximumJ depth
displayed to allow objects created at infinity to move for-J ward into visible space and to

prevent objects moving in and out: from piling up at the front or back of the screen. J

So the virtual display space should be eight times larger than theJ region which is displayed.

It should be noted that objects whichJ spill off to the right or the bottom do not require

boundaries.J They will naturally be terminated by the end of the scan line orJ the

end of the screen; however, they should not be allowed to wrapJ around to the next line or the

next screen. This should not pre-J clude the possibility of intentional wrap around in the

data; this. situation which will be covered later. : Minimizing Graphics Overhead -

- Stenciling 2.2.6 J Any high performance graphics system worth its salt

should be cap-J able of stenciling one object by another. Stenciling is analogousJ to

masking, but more powerful and efficient. It is best explainedJ by example. Suppose that in

the course of a first person advent-J ure game, the player finds himself or herself in a dark

cave. TheJ player must find a pot of gold and simultaneously avoid the attackJ of a

vampire bat. The player can see only by flashlight. The potJ of gold and the bat are motion

objects while the sides of the cave- are described by a scrolling bit map. • J The
circle of light thrown out by the flashlight is a third motionJ object which stencils the cave

bit map, the pot of gold & the bat.J As the circle is moved about, only that portion of cave

wall with-J in its circumference is visible. Likewise, the circle defines theJ

visibility of each pixel of bat and pot. All of the objects areJ "there" all the time; the

game programmer need not manipulate themJ in any other than moving the bat around. But the

circle of lightJ stencils them thereby eliminating them from the output, pixel byJ

pixel, for each pixel that is not coincident with it. TechnicallyJ speaking, stenciling

produces the topological intersection of theJ stenciling object and the stenciled objects. In

this way a planetJ of blue, to represent water, could stencil a bit map representingJ

its continents and cities. As the bit map is scrolled, the planetJ would appear to revolve

... only the portion of bit map coincidentC with the planet's outline would show and be

overlaid on it.• B Minimizing Graphics Overhead -- Collision Detection 2.2.7 J

Hardware collision detection is a controversial subject. On oneJ side of the controversy

are hardware engineers who, generally, areJ strong advocates; it's neet. On the other side

are game designersJ who have had experience with hardware collision detection; it isF

utterly counterproductive and has no socially redeeming value.�

Document Source: atarimuseum.com

• J All hardware collision detect schemes with which I am familiar areJ basically
embodiments of the old 'video coincidence' idea. ThatJ is, at the time of video output,

all the object generators 'look'J to see if the pixel they are currently sending out is

coincidentJ in time with the pixel being generated by any other object gener-J ator.

If it is, they raise their collision detection flags. ThisJ 'video coincidence' scheme can be

nicely integrated into displayJ prioritization, hence, it is a very attractive idea and

keeps get-J ting reinvented and incorporated into new video system designs byJ

enthusiastic and well-intentioned engineers. From a purely hard-J dware viewpoint, automatic

collision detect makes sense. But from= a gaming point of view it is useless for two

reasons. • J First, for all practical purposes, hardware collision detect mustJ be
two screens behind the actual game action. This produces gamesJ with distinctly slow reaction

times. The first screen lag is, ofJ course, the screen in which the actual collision

occurred (call itJ the collision screen). The second lag results from the fact thatJ

during the collision screen, the game formats the following screenJ (call it the post-

collision screen). At the end of the collisionJ screen the post-collision screen is sent to

the graphic hardware.J Only then can the game check for and discover the collision. ThenJ

it can use the fact of the collision in formatting the post-post-J collision screen, but by

then it is too late. What is needed is aJ collision look-ahead that can be used to

appropriately format theJ collision screen itself. This look-ahead is successfully done

inJ software. Before a screen is even created, collisions are checkedH and the

outcome is then passed to the screen formatting routine. J This software collision detection

also successfully overcomes theJ second drawback of hardware collision detection --

unreliability.C For "video coincidence" to work, the colliding objects must be co-• J incident
during the collision screen. This will not, usually, beJ the case. Fast moving objects can

often pass through one anotherJ between screens -- apparently just interchanging their

positions.J To ensure that a collision will not be missed, each object gener-8 ator

must have the following a priori knowledge: D 1, its trajectory in the form of its velocity

and direction,? 2, the trajectories of all other objects on the screen, • J 3, its
cross-sectional profile taken perpendicularly to the lineJ segment drawn from its

geometric center to the geometric center, of each of the other objects and,J 4, the

cross-sectional profiles of all other objects taken perpen-1 dicularly to those same line

segments.• �

Document Source: atarimuseum.com

• J For 20 objects, each object generator would have to "know" 20 setsJ of three
velocity vectors each and would require a means of rep-J resenting and storing 20 cross-

sectional profiles. These must beJ updated for each screen. Each would

hen compare the 'other' pro-J files against its 'self' profile in a mannar analogous to

videoJ coincidence. Further, each object generator must be able to trackJ these

cross-sectional profiles between screens. Each generatorJ would then be much larger than

20 non-collision-detecting object1 generators. This is clearly impractable. • J
Various schemes for getting around this problem have been proposedJ involving 'padding' each

object with a 'collision-space' which isJ larger than the objects themselves and then

detecting collisionsJ between 'collision-spaces'. Without detailling the required dis-J

tortions to the 'collision-spaces' to account for relative motionsJ (everything from

'collision-planes' to egg shapes have been tried)J let it suffice that all approaches tried

have resulted in a worseJ situation than missed collisions. They have produced erroneous<

collisions during what should have been near misses. J The verdict on hardware collision

detection, as passed down by allJ experienced game designers of my aquaintance, is, "I'd

rather doJ it myself." With Atari's present products, hardware collision de-J tection

is either not used (the choise in fast moving games) or itJ is used merely as a flag to

indicate that soft collision detectionJ 'may' be needed and should be checked. "If it may

ever need to beJ checked", game designers say, "for consistent and reliable program=

timing, it should always be checked ... in software." • G Minimizing Graphics Overhead --
Reusing Object Generators 2.2.8• ? Minimizing Graphics Overhead -- Special Effects
 2.2.9• F Minimizing Graphics Overhead -- General Considerations
 2.2.10 J There are various ways of formatting graphic parameters; the meansJ

used can have a significant impact upon the overhead the hardwareJ introduces into the CPU's

life. Formats with consistent, simple,J straight forward structures and which have liberal

rules regardingJ their usage will yield programs that are easier to write, that areJ

more nearly bug free and that run faster. Graphic parameters can! be classified as

follows: • ' 1, Object position and offset,• " 2, Object attributes and,(

3, Object processing functions. J Positions and offsets are used to place the object(s)

referencedJ in the display space. To maximize the flexability in which theyJ can be

used and to minimize the CPU time spent manipulating them,J positions and offsets should be

usable either individually or inJ combination. Taken individually, each should be fully

capable ofJ spanning the entire display space. To put it the other way, takenJ

together, position plus offset should be capable of spanning twiceJ the display space. For

example, if the X-dimension of the displayJ space is 11 bits in extent, that is, the object

can be placed atJ any one of 2048 X-coordinates, then both X-position and X-offsetJ

should be 11 bits long. You may ask why this apparent redundancyJ is important, or even

desired. The reason is that if both are 11J bits long, the game designer has several

Document Source: atarimuseum.com

options in their usage.J The position can be zeroed out and the offset used alone, the off-J

set can be zeroed out and the position used alone or the positionJ and offset can both be

non-zero so that they are used in combina-J tion. If both are the full 11 bits in extent,

then the three op-J tions are equally capable of placing the object at any X-coordin-!

ate point in the display. • J Suppose that the 11 bit X-position is a signed quantity, that
is,J the 2048 values of X-coordinate range from -1024 to +1023. TheJ most

significant bit is its sign bit. If this 11 bit value is toJ be stored in a 16 bit memory

word, then the sign bit should be the* most significant bit of that word: (

like this not like thisI +=-=-=-=-=-=-=-=-=-=-=+=-=-=-=+ +=-=-=-=+=-=-=-=-=-

=-=-=-=-=-=+ • B | X-POSITION | | | | X-POSITION |I +=-=-=-=-

=-=-=-=-=-=-=+=-=-=-=+ +=-=-=-=+=-=-=-=-=-=-=-=-=-=-=+ • J The left-hand method of storing
X-position gives a testable signJ bit that will immediately indicate whether the object is

currentlyJ residing in the positive or negative halves of object space. This% will

streamline the software.• J Finally, all positions and offsets should be binary numbers.
TheJ fact that engineers love to use polycode numbers because this res-J ults in

smaller hardware should not mandate saddling the softwareJ with bulky, time consuming binary-

to-polycode & polycode-to-binaryJ conversion routines. It is better to impliment these

routines inJ hardware and leave the software unencumbered. After all, hardware) is

but once; software is forever.• C Object attributes include such things as height, width,
map• � dimensions H Object parameters are usually directly addressed. The following+
is an example of direct addressing: • , OBJECT_NUMBER: OBJECT_PARAMETER J

In this example, graphics memory location 'OBJECT_NUMBER' containsA the 'OBJECT_PARAMETER'

related to that object. But, this• D parameter is known only to object number 'OBJECT_NUMBER'
andH cannot be shared with another object. Address pointers are usedJ to indicate the

locations of object parameters which are shared byG several objects at once. An example of

this is the X-POSition, • J sited previously, which defined the X-coordinate of a formation ofE
objects and, therefore, was shared by all the objects in that • � formation.* Pointers
which can span the entireD range of the graphic memory are superior to offset, paged orI

segmented memory usage. For example, suppose that graphic memory • D is 16K words in extent.
This requires the use of 14 bits ofE address. From a purely software point of view, it would

seem • H logical to have an associated address parameter which is 14 bits� in length
like this: + OBJECT_NUMBER: ADDRESS_POINTER •
 :- ADDRESS_POINTER: OBJECT_PARAMETER• J In this example, graphics
memory location 'OBJECT_NUMBER' contains@ a 14 bit quantity, 'ADDRESS_POINTER', which the

hardwareI interprets as a second address, also in graphics memory. At this • A second
address (called the indirect address) is found 'OB • 8 But harware engineers feel compelled to
minimize@ memory usage by compacting such address pointers withoutJ considering the

Document Source: atarimuseum.com

impact such compaction has upon the software. ForA example, the 14 bit address could be

compacted like this: • " OBJECT_NUMBER: OFFSET

 :2 OBJECT_NUMBER+OFFSET: OBJECT_PARAMETER ' OBJECT_NUMBER:

PAGE_NUMBER•
 :4 PAGE_NUMBER+OBJECT_NUMBER: OBJECT_PARAMETER - OBJECT_NUMBER:

ADDRESS_POINTER/4•
 :- ADDRESS_POINTER: OBJECT_PARAMETER• I Adopting the conventions
outlined above will go a long way toward • D minimizing the numbers of routines that a game
designer mustG write, debug, and integrate, thereby reducing the complexity of • E the
software and the length of time writing it, improving its • E reliability, minimizing CPU
overhead and the amount of memory • H required and, throughout the life of product, saving
money. TheJ hardware costs are minisule compared with the savings that will beI made

in each and every piece of software to run on that hardware. • �

Document Source: atarimuseum.com

• ; Minimizing Graphics Overhead -- Conclusion 2.2.11 • J The
execution of the graphics functions outlined in the preceedingI sections combined the

application of hardware and software. Some • F functions are most efficiently performed by the
hardware whileC others can be done best by the software, thereby giving the • J
programmer the control he or she needs. Here is a rundown of them: 8 HARDWARE

FUNCTIONS SOFTWARE FUNCTIONS; Horizontal Positioning Perspective

Positioning• 2 Vertical Positioning Zooming4 Display

Prioritization Rotation3 Reflection Collision Detection • �
Inversion" Clipping off-screen graphics� Stenciling• �

SHARED FUNCTIONS• � Reuse of Graphics • � Special Effects• G
Part 1 of this chapter established that the use of graphics RAM • G that is separate from the
main system RAM will allow the CPU to • G operate at full speed, even during the active screen
time. Now • H we know what the CPU will do with that time, asside from playing� the
game.• H Some of the important features of the graphics system are now in

Document Source: atarimuseum.com

 focus: J 1, A self-maintaining three-dimensional display space based upon a.

right orthogonal coordinate system,J 2, A virtual positioning space eight times larger than

the displayC space in which the display space is the positive octant, • H 3,
Automatic generation of independent motion objects within the� virtual space, • I 4,
Automatic grouping and maintenance of super-objects made up of• 6 numbers of the motion
objects in formation,J 5, Automatic display prioritization of objects based upon their Z-5

coordinates on a pixel by pixel basis and, • F 6, Built in aids to graphic object management for
the reuse of� object generators.• �

Document Source: atarimuseum.com

• 6 Minimizing Graphics Overhead -- OMNI 2.2.12 ?

......................................• A . '

`. • C . ' -511 `.• E . '

: `.• G . ' :

`. • I .'.:.`. • I .

: | : . • I . : |
: .• I . : | : . • I .

: | : . • I . : |
: .• I . : | : . • I .

: -y| : . • I . : |
255_______________: . • I . : | / \

. • I . : |z/ \ .• I .

: |/ \ . • I . -1023______________-
x__________!_________x_____________\1023 .• I . .

/|XXXXXXXXXXXXXXXXX/// | . • I . : / |XXXXXXXXXXXXXXXXX///

| . • I . : -z/ |XXXXXXXXXXXXXXXXX/// | .• I .

: / |XXXXXXXXXXXXXXXXX/// | . • I . : /
y|XXXXXXXXXXXXXXXXX/// | . • I . : / |XXXXXXXXXXXXXXXXX///

| . • I . : -255 |XXXXXXXXXXXXXXXXX/// | . • I .

: |XXXXXXXXXXXXXXXXX/// 243 . • I . :
|//////////////////// 289 .• I . :...............| 6 7

| . • I . ' | this 4 7 | . • I .

. | 'cube' 7 1 | . • I . ' |

is the | . • I . . | positive |

. • I . ' | octant | . • I . .

!_______________________! .• I . ' 511

. .• I . . . • I .

' ` . • I . .

. .• I . ' . • I . .

` . • I . ' . .• I . .

. • I .'. .`. • '

 \\\\\ NTSC ///// PAL & SECAM• ' \\\\\ visible /////

visible• % \\\\\ screen /////

screen

Document Source: atarimuseum.com

