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               A PRIMER ON DIGITAL GRAPHICS FOR BROADCAST TELEVISION 

 

 

        FOREWORD 

 

 

        A dirth of technically  competent management is a serious handicap 

        that a technologically based company can ill afford.  A prevailing 

        view is that Atari's corporate management is not just ill-equipped 

        to understand the issues inherent in the computer and video graph- 

        ics industries, but,  worse still, that management is actively un- 

        concerned with such details, that is, that they don't want to know 

        such unfathonable things.   The fear of technology runs rampant in 

        today's society.  Should this fear not naturally find its way into 

        the corporate board room?   It would be very surprising  if it did 

        not.  Technological leadership and innovation go hand in hand.  In 

        their roles as pace setters,  corporate leaders are obliged to be- 

        come at least modestly conversant  with the technology  which they 

        promote.   I prepared this document with that end in mind.  Though 

        intended as an OMNI promotional piece,  it contains much practical 

        knowledge relating to television and digital video graphics.  (The 

        document  has been organized  in such a way that the OMNI material 

        can be deleted by ripping out the pages specifically  dealing with 

        it.)    My co-workers have commented  that if such a document were 

        generally available in the past,  the present Atari products would 

        probably be better and cheaper.   I have tried to present all sub- 

        jects in a nontechnical way.  The feedback I have gotten is that I 

        have generally succeeded.   So, please persevere.  If you have any 

        questions or comments, you will find me a good listener. 
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 CHAPTER 1 -- RESOLUTION AS IT RELATES TO GRAPHICS  1 

 

        Graphics designers  and engineers  call for ever higher resolution 

        to produce better graphics.   Many insist that standard  broadcast 

        TVs are not up to the task  and,  therefore,  champion  the use of 

        expensive high resolution monitors.  Other people are beginning to 

        question this. They ask, "Why can't Atari make a system that looks 

        as good as my home TV?" 

 

        I question the requirement for a monitor.  I believe that a stand- 

        ard broadcast TV can produce astounding  graphics.   All I have to 

        do is tune in a standard broadcast  channel and look at it.   (The 

        running joke is "Wow!  Great graphics.   How'd they do it?")  Con- 

        sidering this obvious capability,  I reviewed  Atari's present and 

        planned products and those of our competition and rejected them as 

        simply mismatched to the standard broadcast television medium. 

 

 

 Part 1 -- Pixel Resolution      1.1 

 

        A pixel is defined as the smallest  unit that can be created  in a 

        graphic medium.  I will show that the pixels that can be generated 

        on a standard broadcast TV are of such small size that they can be 

        realistically termed "high resolution".   Broadcast TV is a medium 

        of rigid limits.   Some of these limits  are built into the trans- 

        mitter, some are within the receiver and some are a consequence of 

        human physiology.  I will show that if these limits are recognized 

        and properly allowed for,  the result can surpass the displays and 

        performance  of arcade game machines.   If the assumption  is that 

        higher resolution means higher frequency, then the system designer 

        is forced by conventional logic to specify a monitor from the out- 

        set.   The logic of frequency limitations will always justify that 

        decision. 

 

 

        Pixel Resolution -- Luminance Limit    1.1.1 
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        Imagine a camera connected to a TV through a stand-   |||||||||||| 

        ard broadcast modulator.  Imagine, further, a large   |||||||||||| 

        sheet of white paper facing the camera upon which a   |||||||||||| 

        pattern of black vertical bars are drawn like this .. |||||||||||| 

 

        The physical setup looks like this: 

 

        PAPER         CAMERA 

          |      +------------+ 

          |   +--|  | 

          |   |  |  | 

          |   +--|  | 

          |      +------------+ 
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        What would you see on the television?  Assuming there was adequate 

        lighting,  you would probably see the bars,  but you might see one 

        or more colors, instead.   It depends upon the number of bars that 

        were within the camera's field of view.   Let me explain.  Suppose 

        that you did,  indeed,  see bars.  If you then dollied  the camera 

        away from the paper more and more ever thinner bars would be with- 

        in its field of view and,  hence,  the TV would show more and more 

        ever thinner bars.   But as you dollied back keeping an eye on the 

        TV you might be surprised  to discover that there was some kind of 

        threshold position beyond which the TV display magically  switches 

        from bars to a shimmering rainbow of colors.  Dolly back in across 

        this threshold and the bars reappear,  dolly out and,  like magic, 

        colors.  What's happening here? 

 

        The phenomenon  is called color artifacting.   It is the reason TV 

        performers are prohibited  from wearing tightly striped or checked 

        clothing.   The problem  is not in the camera or in the modulator. 

        It's an inherent propertly of the transmission medium.  The TV has 

        a limit of luminance resolution beyond which the alternating black 

        and white bars become so small and tightly  packed  that they con- 

        fuse the electronics into interpreting  them as color.   You would 

        count 324* bars (162 pairs)  at the threshold  no matter what what 

        size TV you used.   These 324 bars (equivalent  to a digital freq- 

        uency of 3 mega-hertz) represent a limit to luminance resolution. 

 

        Now that it has been established that 324 black/white alternations 

        is the limit, does it make any sense to produce higher resolution? 

        Yes, it does, as the following chart will illustrate: 

 

                         Black/White video 

             --->   <--- frequency = 3 MHz. 

 

 | | | | | | 

        | BLACK | WHITE | BLACK | WHITE | BLACK | Pixel freq. 

 | | | | | | = 6 MHz. 
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        | B :   | W :   | B :   | W :   | B :   | 

        | L : G | H : G | L : G | H : G | L : G | Pixel freq. 

        | A : R | I : R | A : R | I : R | A : R | = 12 MHz. 

        | C : E | T : E | C : E | T : E | C : E | 

        | K : Y | E : Y | K : Y | E : Y | K : Y | 

 

 

 

 

        * Comb-filtered TVs and some high quality TVs can display more 

          than 324 black/white bars, but this is a good practical limit. 
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        There  is one important  fact from this discussion  which  relates 

        negatively to Atari's present products.   Since the pixel clock is 

        fixed at the color sub-carrier frequency of 3.58 MHz,  the follow- 

        ing pixel sizes, frequencies and pixel counts result: 

 

        PIXEL SIZE    FREQUENCY*  PIX/LINE+    COMMENT 

        ----------    ---------   --------  ------------------------- 

        half-clock     3.58 MHz     352     Useless - color artifacts 

        full-clock     1.79     176     Highest useful resolution 

 

        Using 3.58 MHz as the pixel clock was the worst  possible  choise. 

        The optimum pixel frequency  is 3 MHz and integer  multiples  of 3 

        MHz.   This would have resulted in a highest useful resolution  of 

        294 pixels/line instead of 176 pixels/line -- a 67% increase. 

 

 

        Pixel Resolution -- Chrominance Limit    1.1.2 

 

        Suppose you repeated the bar exercise,  but instead of alternating 

        black/white bars,   you used alternating color/complimentary-color 

        bars  (eg, red/cyan, yellow/blue or green/magenta ... )  You would 

        find a second threshold at approximately 1/3 the distance from the 

        paper.  At a distance less than this chrominance threshold, the TV 

        would display the color bars, but beyond the threshold, gray.  You 

        would count 108 bars (54 pairs)  at the threshold (equivalent to a 

        digital frequency of 1 MHz)which, once again, would be independent 

        of the TV's size. 

 

        Now that you have established  that  108 color/complimentary-color 

        alternations  is the limit,  does producing higher resolution make 

        any sense?  Yes, it does,  as the following chart will illustrate: 

 

            Red/Cyan video 

         <------------ frequency = 1 MHz. -------------> 
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 |          |          | 

        |         R E D         |        C Y A N        |  Pixel freq. 

 |                 |          |  = 2 MHz. 

 

        |       :       :       |       :       :   M   | 

        |       :   Y   :   G   |       :       :   A   | 

        |   R   :   E   :   R   |   C   :   B   :   G   |  Pixel freq. 

        |   E   :   L   :   E   |   Y   :   L   :   E   |  = 6 MHz. 

        |   D   :   L   :   E   |   A   :   U   :   N   | 

        |       :   O   :   N   |   N   :   E   :   T   | 

        |       :   W   :       |       :       :   A   | 

 

 

        * Highest video frequency of Black/White bars 

        + Line duration used in present products is 49 micro-seconds not 

          54.2 micro-seconds.  There is a 5.2 micro-second underscan. 
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        Pixel Resolution -- Conclusion     1.1.3 

 

        Luminance variations which have no aggregate alternating  charact- 

        eristic present no luminance bandwidth  limitation.   However,  if 

        aggregate  luminance  variations  produce even one cycle of alter- 

        nation above 3 mega-hertz, then color artifacting can occur. 

 

        Chrominance variations are produced by rotation of a color vector. 

        In the previous example, a sweep from red to cyan represents a 180 

        degree rotation of the color vector.   Likewise,  cyan back to red 

        is another 180 degrees so that red to red is full circle.  Since a 

        scan line is 54 micro-seconds in duration  and 54 such chrominance 

        alternations can be accomodated per line,  then one alternation is 

        1 micro-second long.  Since this represents a complete rotation of 

        the color vector, then it is more meaningful to say that the limit 

        of chrominance  resolution  of broadcast TV is one rotation of the 

        color wheel per micro-second. 

 

        Here are the brightness profiles for the smallest objects a broad- 

        cast TV can easily produce: 

 

 Chrominance body   <--------------------->  500 nano-seconds 

        Luminance edges    <----->         <----->  167 nano-seconds each 

 

    bright 

          %%%%%%%%%               :::::::::               ********* 

        %%%%%%%%%%%%%%%  dim  :::::::::::::::::       ***************** 

        %% object 1 %%%%%% ::::::: object 2 :::::: ******* object 3 **** 

 

         334 nano-seconds --->  apparent size  <--- 

              (based on half-power) 

 

 

 Objects  1, 2 and 3 cannot possibly  produce excessive chrominance 

        changes  and their edges cannot possibly  produce  color artifact- 
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        ing.  A standard TV can display 108 such objects without violating 

        either chrominance or luminance limits.   At this point the reader 

        must decide whether displaying 108 colored objects per line,  with 

        1/10 inch diameters and 4/100 inch shaded edges each (on a 25 inch 

        TV), can be called "high resolution".  If it can, we must conclude 

        that high resolution  can be acheived on a standard broadcast  TV. 

        With judicious choices for adjacent colors, even higher resolution 

        can be achieved. 
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        Pixel Resolution -- OMNI     1.1.4 

 

        Imagine two bit maps.  One has 480 lines of 324 color-pixels per 

        line to portray the chrominances and luminances in a scene; each 

        color-pixel can be any one of almost 2800 colors.  The other has 

        480 lines of 648 intensity-pixels per line to define edges or to 

        do shading, texturing, etc.; each intensity-pixel can be any in- 

        tensity from full (as determined by color) to black in 16 steps. 

        Further, imagine that these two bit maps are overlaid, intensity 

        upon color, in the output to produce the TV image. That is OMNI. 

 

 

       details               edges 

   full   +-----+ +---------------+       +------+ 

    ^     |     |/|               |/ / / /|      | / / / 

    |     |     +-+               +-+ / +-+      |/ / /: 

   16     |                         |/ /|        | ONE LINE OF 

         levels  |       intensity     +---+ | INTENSITY 

    |     |                   | /   : 

   min    !______________________________________!/    : 

         / / / / / / / / / / / / / / / / / / / / /     : 

        / / / / / / INTENSITY BIT MAP / / / / / /      : 

       / / / / /  648 PIXELS PER LINE  / / / / /       : 

      /_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/    OVERLAYS 

           :       : 

  white  luminance shading      :        : 

    ^     @@@@        ########:###     V 

    |     @@@@@@@@@@@@ /   /   /   /  ########:### /   / 

           24    @@@@@@@@@@@@@@@@@@@@/   /   ########:###/   / 

         levels  @@@@@@@@@@@@@@@@@@@@@@@@@@@@########:### ONE LINE 

    |     @@@@@@@@@@@ chrominance @@@@########:### OF COLOR 

    |     @@@@@@@@@@@@@@@@@@@@@@@@@@@@########:### / 

  black   @@@@@@@@@@@@@@@@@@@@@@@@@@@@########:###/ 

         /   /   /   /   /   /   /   /   /   /:  / 

        /   /   /   / COLOR BIT MAP /   /   / : / 
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              /   /   /  324 PIXELS PER LINE  /   /  V/   TO FORM 

             /___/___/___/___/___/___/___/___/___/___/ 

 

 bright   @@@@                            ######## 

    ^     @@@@@@  @@@@                    ######## 

    |     @@@@@@  @@@@@@@@@@@@          ########## ONE LINE OF 

   384    @@@@@@@@@@@@@@@@@@@@@@@@      ########## REAL TIME 

        levels   @@@@@@@@@@@@@@@@@@@@@@@@@@  ############ VIDEO 

    |     @@@@@@@@@@@@@@@@@@@@@@@@@@@@############ 

   dim    @@@@@@@@@@@@@@@@@@@@@@@@@@@@############ 

 

        OMNI overlays intensity upon color to create the output. 
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        The 16 intensity levels per intensity-pixel can also be used for a 

        a dynamically redefinable gray encoded character font.  Instead of 

        displaying hard-edged white characters on a black background, OMNI 

        can produce soft-edged gray-level characters and overlay them upon 

        a colored background to produce greater character recognition. 

 

 

 +-----------+      +--------+ 

 | THRESHOLD |      |     |--+      ABCDEFGHIJKLMNOPQRSTUVWXYZ 

 |    AND    |<-----| CAMERA |  |<---- abcdefghijklmnopqrstuvwxyz 

 |   SAMPLE  |      |     |--+      !@#$%^&*()_+~{}:"|<>? 

 +-----------+      +--------+       1234567890-=`[];'\,./ 

       |128X96X1 

       | 

              V 

        +-----------------+  +--------+  +------------------+ 

 | HIGH RESOLUTION |  |   |8X6X4 |  LOW RESOLUTION  | 

        |   BLACK/WHITE   |----->| FILTER |----->|   GRAY-ENCODED   | 

        |     BIT MAP     |  |   |  | INTENSITY STAMPS | 

        +-----------------+  +--------+  +------------------+ 

        \________________  _______________/    | 

           \/      | 

        PRE-PROCESSING BY GRAPHICS DESIGNER    V 

          +-----------+ 

     ABCDEFGHIJKLMNOPQRSTUVWXYZ     |  | 

     abcdefghijklmnopqrstuvwxyz <-----|   OMNI | 

     !@#$%^&*()_+~{}:"|<>?     |  | 

     1234567890-=`[];'\,./     +-----------+ 

 

        Creation of a gray-encoded font from a camera input. 

 

 

        With gray-encoded characters  stored in the intensity-pixel stamps 

        maps it may be possible to produce readable 80 character text on a 

        standard broadcast TV.  This intriguing possibility and some comp- 

        lications will be explored further in the next section. 
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 Part 2 -- Physical Dot Resolution     1.2 

 

        The previous discussion accurately presented the electrical resol- 

        uiton limits of NTSC transmission and reception.   One would think 

        that these should be the only limits upon resolution of a graphics 

        image but, unfortunately, there can be a mechanical limit as well. 

        Along the inner surface of the TV screen there lies a metal plate, 

        called the shadow mask,  which is perforated by thousands of holes 

        (or slots).  Electrons fired from the color guns must pass through 

        these gaps to reach the screen.  The mask's function is to isolate 

        the colored dots (or stripes) from one another so that stray elec- 

        trons intended to excite one dot are prevented  from striking  its 

        neighbors.  This has the effect of sharpening what would otherwise 

        be a somewhat fuzzy image.   In analog TV the shadow mask does not 

        degrade the intended image,  but in digital TV the shadow mask can 

        present a problem that I call the "shooting gallery". 

 

 

 Physical Dot Resolution -- The Shooting Gallery   1.2.1 

 

        Imagine that you are at a shooting  gallery which has several hun- 

        dred uniformly spaced targets continuously  parading from right to 

        left at a uniform rate.  You have two guns available, a low resol- 

        ution shotgun and a high resolution rifle. There is one catch. The 

        guns cannot be turned.  They only point straight ahead. 

 

        You select the shotgun  and fire.   It's easy.   Four targets  are 

        knocked down.   No challenge here.  You can fire whenever you want 

        and you hit four targets every time.  No great resolution, though. 

        Obviously if you want to hit just one target you have to switch to 

        the rifle; now comes the challenge.  Not being able to aim to left 

        or right, you have to time your shots carefully. You find that the 

        task requires you to establish a rhythm to your firing.   Too fast 

        or too slow a rate results in hit-hit-miss-hit-hit-miss... or some 

        such pattern.   After spending ten dollars you establish the right 
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        cadence and mow down the entire row.  The barker hands you a three 

        dollar stuffed animal and asks you to move on. 

 

        So you go to the next gallery.  You spot a passing friend and say, 

        "Hey!  Watch this."  Using the same rhythm you established  at the 

        last booth you time you first shot just right and continue firing. 

        Hit-hit-miss !  Your friend walks away chuckling. They tricked you 

        of course.  This booth requires a unique cadence.  The targets are 

        not spaced the same as they were at the last booth, that is, their 

        pitch is different.  Had you used the shotgun at both, chances are 

        you wouldn't have noticed this discrepancy,  but with the rifle it 

        is obvious. 
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        In TV,  the targets are the holes in the shadow mask through which 

        the electrons must pass.   The rate at which the string of targets 

        moves is a constant,  one full line in 54.2 micro-seconds, but the 

        spacing (pitch) between targets and the total number of targets is 

        different from one size of TV to another and from one manufacturer 

        to another for equally sized TVs.  For low resolution systems (the 

        shotgun), timing is not as critical as for high resolution systems 

        (the rifle). 

 

 

 Physical Dot Resolution -- Conclusion    1.2.2 

 

        If a high resolution digital graphics system uses one, fixed pixel 

        frequency, the picture that looks fine on one TV may have distinct 

        moire interference patterns on another.  These moire patterns form 

        as a result of multiple hits on the same target.  An example might 

        help here.  Below is a chart of some common RCA video tubes. 

 

        SIZE PART NUMBER ELEMENT TYPE PITCH ELEMENTS/LINE 

        ----- ----------- ------------ ----- ------------- 

 25 in.  25VCZP22     DOT  .66 mm.     769 

 21  21VBEP22     DOT  .66     646 

 19  19VEDP22     DOT  .61     633 

 19  19VEJP22    STRIPE .826     467 

 17  17VAYTC02    STRIPE .826     418 

 15  15VAETC02    STRIPE .826     369 

 

        Suppose that a high resolution graphics system produces 640 pixels 

        per line (ie,  the trigger is pulled on the hypothetical rifle 640 

        times) on a 19 inch dot matrix TV tube (with 633 targets).   It is 

        obvious that there will necessarily be seven double hits per line. 

        Each double hit will be flanked by a number of semi-double hits to 

        either side.   In fact,  there will be seven groups of double hits 

        flanked  by semi-double hits in each line that forms the 480 lines 

        of the screen.  Taken en masse across all 480 lines they will tend 

        to form a visually displeasing pattern.  This is the moire pattern 
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        referred to.  It will appear as more or less vertical bands on the 

        screen.   This moire pattern manifests itself as an indestinctness 

        of edge where the moire and an object coincide.  It is most notic- 

        able when attempting to display text as an apparent subpixel shift 

        in certain character positions.  This moire effect will be present 

        even when a monitor is used (as the owners of Apple 80 column text 

        cards have discovered).  Using a tunable pixel clock to match the 

        number of shots to the number of targets will eliminate moire for 

        most televisions. 
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 Physical Dot Resolution -- OMNI     1.2.3 

 

        OMNI uses a software controllable  pixel clock which will minimize 

        the "shooting gallery" moire.   The viewer will simply 'focus' the 

        screen through an interactive software routine.   The alternative, 

        as I have previously stated, is to force the consumer to provide a 

        high resolution monitor.  OMNI is the only system that I have seen 

        which would allow a variable pixel rate. 
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 Part 3 -- Color Resolution      1.3 

 

        Color resolution refers,  not to size,  but to the degree to which 

        colors differring only slightly in hue and brightness  are created 

        by the graphics hardware and detected by the human eye. 

 

 

 Color Resolution -- Selection of the Palette   1.3.1 

 

        The phenominon of vision depends upon two types of eye cells: rods 

        and cones.  The rods, which are sensitive to variations in bright- 

        ness,  are most discriminating if the brightness variations happen 

        to be colored green.  Thus, TV uses green to carry the majority of 

        luminance information (59%).   The cones detect variations in hue. 

        It so happens that their hue descrimination  is keenest in orange. 

        Therefore,  a video system should produce greens, reds and yellows 

        with the highest resolution possible. 

 

        What about blues?  As it turns out, the spectrum from cyan through 

        blue to magenta is the lowest resolution region for both luminance 

        and chrominance.  So any good video system should not transmit the 

        blues with the highest spectral resolution.  In other words, there 

        should be many more hues of reds,  yellows and greens available to 

        the graphic artist than cyans, blues and magentas.  Unfortunately, 

        Atari's present products give equal weight to all colors.   Hence, 

        its palette is dominated by almost indistinguishable hues of blue. 

 

 

        Color Resolution -- Shading & Color Tracking   1.3.2 

 

        Color shading on a monitor is an easy task.  Equal amounts of red, 

        blue and green can be added to the basic color to produce  a shade 

        of that color,  but adding luminance to a broadcast TV will create 

        a pastel which tends toward blue or has a blueish semi-tone added. 

        To counter this tendency, the chrominance signal must be increased 

        proportionately.   Technically speaking, this compensation ensures 
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        a constant percentage of color saturation throughout  the range of 

        shades.  Atari's present products don't make this compensation, so 

        oranges go to pink, reds go to pale magenta, etcetera. 

 

        A television station transmits three signals: LUMinance and two 

        chrominance Phasers, calculated like this: 

 

  CAMERA      +-->    R        G        B 

 +-------+    |    X 59%    X 31%    X 10% 

 | Red |    |    -----    -----    ----- 

 | Green |----+    RLUM  +  GLUM  +  BLUM  =  LUMinance 

 | Blue |    | 

        +-------+    |              |    TRANSMITTER 

              +-->    R         B      |    +---------+ 

           - LUM     - LUM  <---+--->| LUM     | 

           -----     -----          |      | 

                Phaser1          Phaser0  -------->| P0, P1  | 

          +---------+ 
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        The TV decodes the primaries from these three quantities by rev- 

        ersing the mathematics like this: 

 

   +-->   P0    P1 

 RECEIVER +-->  + LUM + LUM 

 +-----+  |     ----- ----- 

 | P1  |  |    B     R  ------------------+ 

        | P0  |--+             |   PICTURE TUBE 

        | LUM |  |             |  _____ 

 +-----+  |    B     R  <-----------------+ /     | 

   V      X 10%  X 31%           |    _/      | 

          -----  -----           +-->|  Red   | 

  LUM  -  BLUM  -  RLUM  =  GLUM ---+     +-->|  Blue  | 

                |      |       | 

         +--------------------+     +-->|_ Green | 

         |     |     \      | 

         +-->   GLUM / 59%  =  G  --+      \_____! 

 

        As an example, to create an orange let R,G,B = {1,.5,0}.  Then 

        using the transmitter calcuation proceedures above: 

 

         LUM = .605 P1 = .395 P0 = -.605 

 

 And applying the receiver equations we see: 

 

         R,G,B = {1,.5,0} = orange. 

 

        Now to create an orange with twice the luminance 

 

        The correct way is to double The present Atari way is to 

        LUM, P1 & P0   double LUM but not P1 & P0 

 

            LUM' = 2LUM = 1.21          LUM' = 2LUM = 1.21 

             P1' =  2P1 = .79              P1' =  P1  = .395 

             P0' =  2P0 = -1.21           P0' =  P0  = -.605 
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                The TV decodes and displays: 

 

 R',G',B' = {2,1,0} = orange  R',G',B' = {1.6,1.1,.6} = pink !! 
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        Color Resolution -- OMNI     1.3.3 

 

        OMNI will generate  and display  more colors with fewer parts than 

        any other graphics system.   It generates colors mathematically to 

        simulate the output of a 203 stage delay line, but without a delay 

        line or baseband modulator.  The color palette contains the mathe- 

        matical description of one cycle of each of almost 2800 colors for 

        use by color-pixels (324 per line) and OMNI will generate constant 

        saturation throughtout all shades produced while overlaying color- 

        pixels with intensity-pixels (648 per line)  as they perform their 

        edge smoothing and texturing jobs.  OMNI will mix in video disk or 

        other electronic sources and sychronize to their signals.  OMNI is 

        made for the broadcast television medium. 

 

        Atari's present products allow 16 colors to be simultaneously dis- 

        played.  The market demands more.  There are proposed systems that 

        would display up to 256 colors.   Is that enough?   To answer that 

        question,  one must calculate  how many hues and shades 256 colors 

        really represent.   To illustrate, here is a rundown of the colors 

        OMNI can produce contrasted  with the colors which can be produced 

        by the traditional approach: 

 

         OMNI APPROACH   TRADITIONAL APPROACH 

 

            5 bits of LUMinance      3 bits of red 

      4 bits of Phaser0     3 bits of green 

             5 bits of Phaser1      2 bits of blue 

 

  NUMBER OF   NUMBER OF  NUMBER OF   NUMBER OF 

        HUE   HUES   COLORS ( % )    HUES   COLORS ( % ) 

        ------ --------- -------------  --------- ------------- 

 gray     1       24 (  0.9)      1      4 (  1.6) 

        red    42    689 ( 24.7)     17     47 ( 18.4) 

        yellow    38    524 ( 18.7)     17     49 ( 19.1) 

        green    47    595 ( 21.3)     17     47 ( 18.4) 

        cyan    26    390 ( 13.9)     14     38 ( 14.8) 
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        blue    26    323 ( 11.6)     12     34 ( 13.3) 

        magenta    23    249 (  8.9)     13     37 ( 14.4) 

           ---   ------------     --    ------------ 

           203   2794 (100.0)     91    256 (100.0) 

    X  16 intensities/color 

          ------ 

          44,704 color & intensity combinations 

 

          13.76 shades per hue    2.81 shades per hue 

                65% in red-yellow-green         56% in red-yellow-green 

               output is composite video     output is RGB 

 

        OMNI's composite  video output means that the signal is already of 

        the proper type for application to a base-band monitor or standard 

        broadcast TV while to the traditional approach one must add either 

        a 91 tap delay line with decoder or a quadrature modulator.  If an 

        RGB output is mandatory, it can be created from the OMNI composite 

        video by adding a simple resistor matrix and one amplifier.   OMNI 

        scales the chrominance & luminance proportionately  when intensity 

        is applied to create shading or an edge.   As can be seen from the 

        conclusion, this results in accurate color tracking. 
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        CHAPTER 2 -- THROUGHPUT AS IT RELATES TO GAMING   2 

 

        Throughput is often a somewhat nebulus term.  In gaming, it can be 

        thought of as the upper bound on the playability of a game system; 

        the amount of action and interaction in the most complex game that 

        a system can support.  It includes the creation and positioning of 

        graphics,  the evaluation of user responses, the interpretation of 

        game rules or constructs, the creation of sounds, etc.   If a game 

        can be thought of as  an artificial reality  with which and within 

        which one or more human players can interact, then throughput is a 

        measure of the complexity  of that reality and the richness of ex- 

        perience available to those players. 

 

        The meterstick with which the throughput of competing game systems 

        can be measured and compared is the complexity of games which each 

        will support.   If one game system can 'play' a certain  game that 

        another cannot, the former system can be proclaimed as superior to 

        the later.  However, such a benchmark game cannot exist during the 

        development of the competing systems (according to game designers, 

        such a benchmark  game will never exist),  so the solution  to the 

        paradox  of how to judge the puddings  before they have been baked 

        is obviously not in the tasting,  it lies in a comparison of their 

        recipes.  Here are two important ingredients: 

 

        Maximizing CPU Timespace -- the percentage of CPU time available 

          for game play and 

        Minimizing Graphics Overhead -- the percentage of CPU time spent 

          tending to graphics tasks. 

 

 

 Part 1 -- Maximizing CPU Timespace     2.1 

 

        The most powerful graphics hardware will not appreciably  increase 

        throughput if it obtrusively halts the CPU for significant amounts 

        of time.   In fact, obtrusive graphics hardware can so drastically 
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        decrease game play that is a liability.   Three tasks which relate 

        to graphics which can impact the CPU timespace are: 

 

         Loading graphics, 

         Running graphics and 

         Refreshing graphics memory. 

 

 

 Maximizing CPU Timespace -- Loading Graphics   2.1.1 

 

        A graphic consists of a parameter block:  object position,  format 

        code, etc., and a data block: graphic format, colors, intensities, 

        etc.   A block can either be passed through CPU registers or DMAed 

        (direct memory accessed). 
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        Passing graphic blocks through CPU registers  is the most invasive 

        method of loading graphics.  The CPU must get the block from what- 

        ever mass storage  is used and then load it into the GPU (Graphics 

        Processing Unit).  Of course, this must be done one word at a time 

        with the CPU controlling the source and destination  addresses and 

        associated  byte or word counter.   This scheme has one advantage. 

        Since the CPU is intimately involved in the loading procedure,  it 

        can alter a block on the fly as it is loaded.  However, since this 

        capability does not lend itself to structured programming, ie, the 

        creation of programs constructed from functionally  differentiated 

        routines, it is of dubious utility.  Register passing has an over- 

        riding disadvantage, though.  It takes approximately twice as long 

        to accomplish the load as DMA does. 

 

        There are two types of DMA: transparent and cycle stealing.   With 

        transparent DMA, the CPU is unaware of DMA activity.  The transfer 

        occurs during cycles in which the CPU is busy performing  internal 

        operations such as register-register transfers,  calculations  and 

        the like.   Of course, there must be a way for the CPU to tell the 

        DMA controller  when it does not need the memory and the length of 

        time the memory will be free.   Many new, powerful microprocessors 

        operate essentially asynchonously  to memory so that this criteria 

        cannot be easily met.  Also transparent DMA has two inherent draw- 

        backs which require some careful thought to understand. 

 

        First,  since the memory transfers are transparent, the CPU cannot 

        automatically know when DMA is done.  So there is a possibility it 

        may try to alter the loaded data before it is actually there, that 

        is, before the load has finished.  The common way to guard against 

        this is to have the CPU poll the DMA controller  to ascertain when 

        it has finished.   While polling, though, the CPU is not doing any 

        constructive work, thus negating the logic of transparent DMA. 

 

        The second drawback is very esoteric but of paramount  importance. 

        As viewed from the CPU's perspective, transparent DMA, is an asyn- 

        chronous operation,  therefore, it adds unpredictability that real 
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        time programming, ie, games, cannot easily cope with.   The relia- 

        bility  of a game must be a major consideration  for an unreliable 

        game is a bad product.   Game designers prefer a DMA that requires 

        the allocation of a known period of enforced CPU inactivity.  Reg- 

        ister passing ensured this but was too slow.  A good compromise is 

        cycle-stealing DMA. 

 

        In cycle-stealing DMA,  the DMA controller halts the CPU (steals a 

        cycle) for each word that is transferred.   While a block is being 

        transferred en masse the CPU is halted for the duration.   But the 

        CPU knows how long that is.  It is "blocklength" number of cycles. 

        Cycle-stealing  DMA has the speed of direct memory access with the 

        predictability of register passing. 
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 Maximizing CPU Timespace -- Running Graphics   2.1.2 

 

        While it's desirable to halt the CPU while loading graphics,  it's 

        disruptive  to do it every time the GPU access those graphics,  as 

        in Atari's present products,  and it's disasterous to halt the CPU 

        during the entire active video screen time,  as has been proposed. 

        I shall explain.   Even though the CPU controls the flow of infor- 

        mation to the graphics hardware,  it does not know how complex the 

        resulting  images will be or how much time it will take the GPU to 

        create them or how many memory accesses the GPU will have to make. 

        In other words,  the actual creation of the graphics is an asynch- 

        ronous operation with which the CPU need not be concerned.   It is 

        for this reason that special purpose graphics hardware exists. 

 

        To be truely worth the expense,  the generation of graphics should 

        be a parallel process that the CPU can set and forget.  This set & 

        forget capability absolutely  dictates that the graphics memory be 

        separate from main system memory so that the GPU will not halt the 

        CPU for unknown periods of time.   The following time lines graph- 

        ically illustrate this non-invasive set & forget graphics,  an in- 

        vasive architecture  in which memory is shared and a very invasive 

        scheme in which the CPU is denied the use of memory during  active 

        screen time. 

 

 

          NON-INVASIVE SET & FORGET GRAPHICS 

 

        :<----- one full screen ---->: 

               :     : 

             CPU Timespace =======PROCESS=PROCESS=PROCESS==> 

        (over 90% of total time)    :  ^^ ^|| ^| | |||^^ ||^|^ : 

        (known lengths of time)     :  || ||| || | ||||| ||||| : 

        :  || |playing the game||| : 

               :  || ||| || | ||||| ||||| : 

               :  || |vv |v v vvv|| vv|v| : 
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          System Memory Timespace ==BUSY=WORKING=WORKING=WORKING==> 

               ||||    : 

               load     : 

               ||||    : 

               vvvv    : 

        Graphics Memory Timespace ==BUSY=WORKING=WORKING=WORKING==> 

        :  ||||| || |  || | ||| || : 

        :  |creating the graphics| : 

        :    ||||| || |  || | ||| || : 

               :  vvvvv vv v  vv v vvv vv : 

             GPU Timespace =======PROCESS=PROCESS=PROCESS==> 
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               INVASIVE GRAPHICS 

 

             CPU Timespace ==PROCE=====E==S=S===P=R===O==C=> 

        (halted by GPU accesses)    ^^ ^|     |  ^ |   | |   |  |: 

        (unknown bits & pieces     || ||     |  | |   | |   |  |: 

  of time)      || |p     la y in  g t   h  e: 

               || ||     |  | |   | |   |  |: 

               || |v     v  | v   v v   v  v: 

          System Memory Timespace ==WORKING=WORKING=WORKING=WORKI=> 

        :    ||||| || |  || | ||| || : 

        :    |creating the graphics| : 

        :    ||||| || |  || | ||| || : 

               :    vvvvv vv v  vv v vvv vv : 

             GPU Timespace =======PROCESS=PROCESS=PROCESS==> 

 

 

             VERY INVASIVE GRAPHICS 

 

             CPU Timespace ==PROC==========================> 

        (7% of total time)     ||^^    : 

        (halted during active     ||||    : 

  screen time)      |||p    : 

               ||||    : 

               vv||    : 

          System Memory Timespace ==WORKING=WORKING=WORKING=WORKI=> 

        :   ||||| || |  || | ||| ||  : 

        :   |creating the graphics|  : 

        :   ||||| || |  || | ||| ||  : 

               :   vvvvv vv v  vv v vvv vv  : 

             GPU Timespace ======PROCESS=PROCESS=PROCESS===> 

 

 

 Maximizing CPU Timespace -- Refreshing Graphics Memory  2.1.3 

 

        Dynamic memory is cheaper than static or pseudo-static memories. 

        For that reason, it is preferred.  But dynamic memory requires a 
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        refresh cycle every 4 milli-seconds to maintain its data.   This 

        refresh accounts for approximately 0.4% of the CPU timespace,  a 

        small overhead.   Since system memory usually also includes some 

        dynamic memory, for the same reason, then it would make sense to 

        refresh both simultaneously.   Failing that, the graphics memory 

        should be transparently refreshed by the graphics hardware or by 

        the memory controller. 

 

 

 Maximizing CPU Timespace -- Conclusion    2.1.4 

 

        To maximize CPU timespace, then, one should minimize the numbers 

        of asynchronous events that it has to deal with.  To that end, a 

        graphics system should 

 

        1, have graphics memory separate from the system memory which is 

           either transparently refreshed or is refreshed simultaneously 

           with system memory refresh and, 

        2, use cycle-stealing DMA to load graphics. 
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 Maximizing CPU Timespace -- OMNI    2.1.5 

 

        OMNI has been designed to utilize dynamic RAM for graphics that is 

        separate from main system RAM.   This graphics RAM is loaded, upon 

        CPU initiation,  by means of cycle-stealing DMA.   It is refreshed 

        simultaneously with system RAM refresh.   In this way,  the CPU is 

        running  and working  all the time except during those predictable 

        lengths of time when DMA occurs. Since the programmer will usually 

        initiate DMA during vertical  blanking,  he or she should have the 

        entire screen  time (93% of total time)  in which to do game play. 

        Furthermore,  the programmer has access to the graphics RAM all of 

        the time - even during the active  screen  time - and can,  there- 

        fore, read or write graphics whenever desired.  Since the graphics 

        hardware must have unrestricted  access rights during screen time, 

        CPU requests for reads from or writes to graphics RAM will be on a 

        lower priority catch as catch can basis.  If this is unacceptable, 

        the programmer should retain copies of critical parameters in main 

        system RAM for reference and leave graphics RAM undisturbed during 

        the active screen at his or her option. 
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        Part 2 -- Minimizing Graphics Overhead     2.2 

 

 Splendid graphics can be produced using a bit mapped screen and no 

        specialized graphics hardware.  The process of forming an image of 

        many objects at once on a simple bit mapped screen is slow,  soft- 

        ware intensive and very tedious.   Independent motion objects gen- 

        erated by specialized  graphics hardware make the creation of fast 

        moving objects a manageable proposition.  Atari's present products 

        utilize motion object generators and there is every reason to con- 

        tinue that development.   Assuming that this trend is to continue, 

        it is of further advantage  to relieve the CPU of as many graphics 

        tasks as possible relating to the creation  and use of independent 

        motion objects.  These tasks typically include: 

 

         Positioning graphics horizontally (in X), 

         Positioning graphics vertically (in Y), 

  Prioritizing graphics visually by depth (in Z), 

         Scaling & zooming graphics, 

         Rotating, inverting & reflecting graphics, 

         Clipping partially off-screen graphics, 

         Stenciling one graphics object by another, 

         Detecting collisions, 

         Creating animation sequences, 

         Reusing graphics object generators, 

         Changing the color palette and 

         Creating special effects. 

 

 

        Minimizing Graphics Overhead -- Positioning Graphics  2.2.1 

 

        In a three-dimemsional graphics system, each object displayed must 

        be positioned horizontally, vertically and by screen depth, ie, in 

        X, Y & Z.  There are two alternative schemes.  In one, the initial 

        position is loaded when the object is created.  The object is then 

        programmatically  moved about the screen by means of an associated 
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        pointing vector which can describe either its velocity  and direc- 

        tion or its acceleration and direction.  The hardware automatical- 

        ly updates its position at the beginning of each screen based upon 

        its position during the previous screen and the magnitude  and the 

        direction of its pointing vector.   In the second, simpler method, 

        the CPU maintains the pointing vector in software and directly up- 

        dates the object's position at the beginning of each screen. 

 

        Although the vector method sounds attractive, it is too automatic. 

        The game program can easily lose track of objects.  Though a means 

        of reading an object's position could be provided, this would be a 

        classic case of diminishing returns.  It has been established that 

        it is easier to compute and load object positions in software than 

        to track and control self-motivated objects.  This also results in 

        more compact and efficient hardware.  Of course, it should be pos- 

        sible to change one position coordinate,  say X, without having to 

        reload unchanged coordinates, Y & Z in this case. 
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        It should also be possible to group objects together  in formation 

        and then position then en masse instead of individually.  This can 

        be easily done by subdividing an object's coordinates into the sum 

        of positions and offsets.  Thus, COORDINATE(X,Y,Z) = {X,Y,Z} where 

 

         |X| = X-POSition + X-OFFset, 

         |Y| = Y-POS + Y-OFF and 

         |Z| = Z-POS + Z-OFF are the magnitudes of X, Y & Z, 

 

        is equivalent to COORDINATE'(POS,OFF) = POS + OFF where 

 

         POS(X,Y,Z) = {X-POS,Y-POS,Z-POS} and 

         OFF(X,Y,Z) = {X-OFF,Y-OFF,Z-OFF} are vector quantities. 

 

        POSition is then the coordinates  of the formation's common refer- 

        ence point and OFFset is the coordinates of a particular member of 

        the formation relative to POSition. 

 

        Schematically a position relative offset system works like this: 

 

 

        origin of the      reference point        OBJECT2 

        coordinate system    |           / 

        |      v          / 

        v /      ---------X-OFF1---------+ 

         /                         *---X-OFF2---+     /    | 

        *------X-POS------+       /             |  Z-OFF2  |     OBJECT1 

        |    |      /              |   /      |    / 

        |    |     /            Y-OFF2/    Y-OFF1 / 

            |  Z-POS              | /        |Z-OFF1 

                 Y-POS /                 |/         | / 

            |  /                  +          |/ 

            | /                              + 

            |/ 

            + 
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        Objects 1 & 2 can be moved relative  to each other by manipulating 

        OFFsets and can be moved together,  in formation, by changing POS- 

        ition.   This way a super-object consisting  of 20 sub-objects can 

        be moved,  by POSition,  with only one to three stores instead  of 

        the 20 to 60 stores that would otherwise be required for that many 

        objects. 
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        Programmatically, 'n' objects point to a common parameter area 

        containing their POSition, thus: 

 

 +--------------------- SUPER-OBJECT -----------------------+ 

        | +-- OBJECT1 --+    +-- OBJECT2 --+     +-- OBJECTn --+   | 

        | |    X-OFF    |    |    X-OFF    |     |    X-OFF    |   | 

        | |    Y-OFF    |    |    Y-OFF    | ... |    Y-OFF    |   | 

        | |    Z-OFF    |    |    Z-OFF    |     |    Z-OFF    |   | 

        | |   POINTER   |-+  |   POINTER   |-+   |   POINTER   |-+ | 

        | +-------------+ |  +-------------+ |   +-------------+ | | 

        |           |                  |                   | | 

        |           +-------+ +--------+                   | | 

        |            | | +--------------------------+ | 

        |            | | |       | 

        |            V V V       | 

        |       +---- POS ----+      | 

        |       |    X-POS    |      | 

        |       |    Y-POS    |      | 

        |       |    Z-POS    |      | 

 |       +-------------+      | 

        +----------------------------------------------------------+ 

 

        It should be possible to create any number of these super-objects. 

 

        Perspective is the intentional  distortion of the display space to 

        achieve an enhanced illusion of depth.  It is acheived by adding a 

        differential  offset to the coordinates which would otherwise pro- 

        duce a non-perspective view.  The problems encountered are formid- 

        able.  Besides the obvious difficulties, there is a subtle aspect. 

        If the TV is to act as a window into the display  space,  then the 

        player's field of view should be taken into account  when figuring 

        perspective.  The field of view is determined by two measurements: 

        the distance  from the player to the screen and the screen's size. 

        The player could enter these parameters  at the start of the game. 

        They can then be used to scale the apparent  depth  of the display 
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        space to give it a natural aspect.  This is important as it should 

        be done to avoid tunnel-vision,  that is, the illusion that the TV 

        screen is a 'lens' with a different perspective than reality.   To 

        appreciate this effect,  play any first-person space game on a six 

        foot projection TV while sitting six feet away,  a 55 degree field 

        of view, and then play the same game while sitting three feet away 

        from a 21 inch TV, a 30 degree field of view.  Admittedly, this is 

        a minor correction,  but ascendancy  in future markets may require 

        such attention to detail.   Perspective positioning in hardware is 

        probably be too expensive  and too inflexable;  it is done best by 

        the game designer in software. 

 

        Finally,  the coordinate system should be right-orthagonal, ie, it 

        should have mutually perpendicular ordinates (the usual X,Y,Z type 

        with which most people are familiar) rather than spherical or cyl- 

        indrical ordinates (neither of which are really suited to rectang- 

        ular TVs),  which conforms to the right-hand convention for normal 

        cartisian coordinate spaces (in which tightening  a Z-axis aligned 

        screw from above produces a sweep from Y to X) so that rotation in 

        X, Y & Z will produce proper, not reversed, motion. 
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        Minimizing Graphics Overhead -- Display Prioritization  2.2.2 

 

        If two or more objects are coincident in X and Y but overlap in Z, 

        then it is logical that the most frontal of them would obscure the 

        rest and be the only one displayed.   Deciding which of them is in 

        front is called display prioritization. 

 

        Priority can be determined  on an object basis or on an individual 

        pixel basis.  If it is done on an object basis, then all pixels in 

        a particular object either have priority or don't have priority en 

        masse.  This is undesirable since as soon as one object overlapped 

        another, even by one pixel, the anterior object would suddenly and 

        completely disappear.  To overcome this drawback, the obsured part 

        of the anterior object could be lopped off in the data.   But this 

        would have no advantage, whatsoever, over a simple bit map.  So to 

        preserve the obvious advantage of independent motion objects, they 

        must be capable of prioritizing themselves pixel by pixel. 

 

        Pixel display prioritization  can be accomplished in several ways. 

        The best way is to have each object generator use its Z-coordinate 

        as a weapon in a fight for display survival.  The winner gains the 

        right to display its pixel.  On the very next pixel, the battle is 

        repeated with more or fewer object generators joining in,  depend- 

        ing upon which of them have a pixel to output on that clock.   And 

        so on,  pixel after pixel,  for every pixel in the visible screen. 

        This Z-combative method has one great advantage:  the battle rages 

        in parallel.   It matters not whether there are two object genera- 

        tors in the frey or two hundred.   The length of time it takes for 

        a winner to emerge is essentially constant.  Also, the Z-combative 

        method is self-maintaining,  that is, when an object is assigned a 

        new value of Z which moves it closer to the screen,  it has simul- 

        taneously been given a bigger weapon with which to do battle. 

 

        A less desirable alternative assigns each object generator a fixed 

        priority based upon its position in a serial hardware chain.  This 
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        idea is passive, not combative.  If the generator with the highest 

        priority has no pixel to output, then it passes the display rights 

        to the generator  which has the next highest priority,  and so on. 

        As with all such serial chains,  this one suffers from propagation 

        delays that are additive.  These delays limit the number of    ||| 

   :�                load     : • �                |||| 

   :�                vvvv    :C         Graphics Memory Timespace 

==BUSY=WORKING=WORKING=WORKING==> • $         :  ||||| || |  || | ||| || :$    

     :  |creating the graphics| :&         :    ||||| || |  || | ||| || :+          

      :  vvvvv vv v  vv v vvv vv :• <              GPU Timespace 

=======PROCESS=PROCESS=PROCESS==>� 

Document Source: atarimuseum.com



•                      INVASIVE GRAPHICS  <              CPU Timespace 

==PROCE=====E==S=S===P=R===O==C=>B         (halted by GPU accesses)    ^^ ^|     |  ^ |   | |   |  

|:A         (unknown bits & pieces     || ||     |  | |   | |   |  |:• .   of time)      || |p     

la y in  g t   h  e:-                || ||     |  | |   | |   |  |:• -                

|| |v     v  | v   v v   v  v:• C           System Memory Timespace 
==WORKING=WORKING=WORKING=WORKI=> • &         :    ||||| || |  || | ||| || :&   

      :    |creating the graphics| :&         :    ||||| || |  || | ||| || 

:-                :    vvvvv vv v  vv v vvv vv :• <              GPU Timespace 
=======PROCESS=PROCESS=PROCESS==>    #              VERY INVASIVE GRAPHICS •   <              

CPU Timespace ==PROC==========================>(         (7% of total time)     ||^^    

:+         (halted during active     ||||    : • �   screen time)      |||p  

  : • �                ||||    :�                vv||  

  :C           System Memory Timespace ==WORKING=WORKING=WORKING=WORKI=> • &         :   

||||| || |  || | ||| ||  :&         :   |creating the graphics|  :&    

     :   ||||| || |  || | ||| ||  :-                :   vvvvv vv v  vv v vvv vv  

: • <              GPU Timespace ======PROCESS=PROCESS=PROCESS===>    >  Maximizing CPU Timespace -- 

Refreshing Graphics Memory  2.1.3  H         Dynamic memory is cheaper than static or pseudo-

static memories.H         For that reason, it is preferred.  But dynamic memory requires aH         

refresh cycle every 4 milli-seconds to maintain its data.   ThisH         refresh accounts for 

approximately 0.4% of the CPU timespace,  aH         small overhead.   Since system memory usually 

also includes someH         dynamic memory, for the same reason, then it would make sense toH         

refresh both simultaneously.   Failing that, the graphics memoryH         should be transparently 

refreshed by the graphics hardware or by-         the memory controller.    0  Maximizing CPU 

Timespace -- Conclusion    2.1.4  H         To maximize CPU timespace, 

hen, one should minimize the numbersH         of asynchronous events that it has to deal with.  To 

that end, a-         graphics system should  H         1, have graphics memory separate from the 

system memory which isH            either transparently refreshed or is refreshed simultaneously*            

with system memory refresh and,3         2, use cycle-stealing DMA to load graphics. • � 
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•       *  Maximizing CPU Timespace -- OMNI    2.1.5  J         OMNI has been designed 

to utilize dynamic RAM for graphics that isJ         separate from main system RAM.   This graphics 

RAM is loaded, uponJ         CPU initiation,  by means of cycle-stealing DMA.   It is refreshedJ         

simultaneously with system RAM refresh.   In this way,  the CPU isJ         running  and working  all 

the time except during those predictableJ         lengths of time when DMA occurs. Since the 

programmer will usuallyJ         initiate DMA during vertical  blanking,  he or she should have theJ         

entire screen  time (93% of total time)  in which to do game play.J         Furthermore,  the 

programmer has access to the graphics RAM all ofJ         the time - even during the active  screen  

time - and can,  there-J         fore, read or write graphics whenever desired.  Since the graphicsJ         

hardware must have unrestricted  access rights during screen time,J         CPU requests for reads 

from or writes to graphics RAM will be on aJ         lower priority catch as catch can basis.  If this 

is unacceptable,J         the programmer should retain copies of critical parameters in mainJ         

system RAM for reference and leave graphics RAM undisturbed during/         the active screen at his 

or her option. • � 
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•       6         Part 2 -- Minimizing Graphics Overhead     2.2  C  Splendid graphics 

can be produced using a bit mapped screen and no • J         specialized graphics hardware.  The process 
of forming an image ofJ         many objects at once on a simple bit mapped screen is slow,  soft-J         

ware intensive and very tedious.   Independent motion objects gen-J         erated by specialized  

graphics hardware make the creation of fastJ         moving objects a manageable proposition.  Atari's 

present productsJ         utilize motion object generators and there is every reason to con-J         

tinue that development.   Assuming that this trend is to continue,J         it is of further advantage  

to relieve the CPU of as many graphicsJ         tasks as possible relating to the creation  and use of 

independent7         motion objects.  These tasks typically include: •   2          Positioning 

graphics horizontally (in X),0          Positioning graphics vertically (in Y),1  

 Prioritizing graphics visually by depth (in Z), • $          Scaling & zooming graphics,3         

 Rotating, inverting & reflecting graphics, • 0          Clipping partially off-screen 

graphics,3          Stenciling one graphics object by another, • -          Detecting 

collisions,&          Creating animation sequences,,          Reusing graphics object generators,'         

 Changing the color palette and• "          Creating special effects.    C         Minimizing 

Graphics Overhead -- Positioning Graphics  2.2.1•   J         In a three-dimemsional graphics 
system, each object displayed mustJ         be positioned horizontally, vertically and by screen 

depth, ie, inJ         X, Y & Z.  There are two alternative schemes.  In one, the initialJ         

position is loaded when the object is created.  The object is thenJ         programmatically  moved 

about the screen by means of an associatedJ         pointing vector which can describe either its 

velocity  and direc-J         tion or its acceleration and direction.  The hardware automatical-J         

ly updates its position at the beginning of each screen based uponJ         its position during the 

previous screen and the magnitude  and theJ         direction of its pointing vector.   In the second, 

simpler method,J         the CPU maintains the pointing vector in software and directly up-D         

dates the object's position at the beginning of each screen.  J         Although the vector method 

sounds attractive, it is too automatic.J         The game program can easily lose track of objects.  

Though a meansJ         of reading an object's position could be provided, this would be aJ         

classic case of diminishing returns.  It has been established thatJ         it is easier to compute 

and load object positions in software thanJ         to track and control self-motivated objects.  This 

also results inJ         more compact and efficient hardware.  Of course, it should be pos-J         

sible to change one position coordinate,  say X, without having to9         reload unchanged 

coordinates, Y & Z in this case.• � 
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•     J         It should also be possible to group objects together  in formationJ         and then 
position then en masse instead of individually.  This canJ         be easily done by subdividing an 

object's coordinates into the sumJ         of positions and offsets.  Thus, COORDINATE(X,Y,Z) = 

{X,Y,Z} where  %          |X| = X-POSition + X-OFFset,•            |Y| = Y-POS + Y-OFF and<         
 |Z| = Z-POS + Z-OFF are the magnitudes of X, Y & Z,  ?         is equivalent to 

COORDINATE'(POS,OFF) = POS + OFF where•   -          POS(X,Y,Z) = {X-POS,Y-POS,Z-POS} and• @         
 OFF(X,Y,Z) = {X-OFF,Y-OFF,Z-OFF} are vector quantities.  J         POSition is then the 

coordinates  of the formation's common refer-J         ence point and OFFset is the coordinates of a 

particular member of+         the formation relative to POSition. •   H         Schematically a position 
relative offset system works like this:    9         origin of the      reference point        

OBJECT2• *         coordinate system    |           /�         |      v          

/ • *         v /      ---------X-OFF1---------+<          /                         *---X-

OFF2---+     /    |H         *------X-POS------+       /             |  Z-OFF2  |     OBJECT14         

|    |      /              |   /      |    /3         |    |     /            Y-OFF2/    

Y-OFF1 / • 4             |  Z-POS              | /        |Z-OFF17                  Y-POS /                 

|/         | / • /             |  /                  +          |/ • .             | /                              

+
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             |/             +•     J         Objects 1 & 2 can be moved relative  to each 
other by manipulatingJ         OFFsets and can be moved together,  in formation, by changing POS-J         

ition.   This way a super-object consisting  of 20 sub-objects canJ         be moved,  by POSition,  

with only one to three stores instead  ofJ         the 20 to 60 stores that would otherwise be 

required for that many�         objects.� 
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•       F         Programmatically, 'n' objects point to a common parameter area(         containing 
their POSition, thus:  =  +--------------------- SUPER-OBJECT -----------------------+• D         | 
+-- OBJECT1 --+    +-- OBJECT2 --+     +-- OBJECTn --+   |D         | |    X-OFF    |    |    X-OFF    

|     |    X-OFF    |   |D         | |    Y-OFF    |    |    Y-OFF    | ... |    Y-OFF    |   |D         

| |    Z-OFF    |    |    Z-OFF    |     |    Z-OFF    |   |D         | |   POINTER   |-+  |   POINTER   

|-+   |   POINTER   |-+ |D         | +-------------+ |  +-------------+ |   +-------------+ | |>         

|           |                  |                   | |>         |           +-------+ +-------

-+                   | |7         |            | | +--------------------------+ | • "         | 
           | | |       |"         |            V V V       

|&         |       +---- POS ----+      |&         |       |    X-POS    | 

     |&         |       |    Y-POS    |      |&         |       |    

Z-POS    |      |  |       +-------------+      | • D         +------------
----------------------------------------------+  J         It should be possible to create any number 

of these super-objects.  J         Perspective is the intentional  distortion of the display space 

toJ         achieve an enhanced illusion of depth.  It is acheived by adding aJ         differential  

offset to the coordinates which would otherwise pro-J         duce a non-perspective view.  The 

problems encountered are formid-J         able.  Besides the obvious difficulties, there is a subtle 

aspect.J         If the TV is to act as a window into the display  space,  then theJ         player's 

field of view should be taken into account  when figuringJ         perspective.  The field of view is 

determined by two measurements:J         the distance  from the player to the screen and the screen's 

size.J         The player could enter these parameters  at the start of the game.J         They can 

then be used to scale the apparent  depth  of the displayJ         space to give it a natural aspect.  

This is important as it shouldJ         be done to avoid tunnel-vision,  that is, the illusion that 

the TVJ         screen is a 'lens' with a different perspective than reality.   ToJ         appreciate 

this effect,  play any first-person space game on a sixJ         foot projection TV while sitting six 

feet away,  a 55 degree fieldJ         of view, and then play the same game while sitting three feet 

awayJ         from a 21 inch TV, a 30 degree field of view.  Admittedly, this isJ         a minor 

correction,  but ascendancy  in future markets may requireJ         such attention to detail.   

Perspective positioning in hardware isJ         probably be too expensive  and too inflexable;  it is 

done best by&         the game designer in software.  J         Finally,  the coordinate system should 

be right-orthagonal, ie, itJ         should have mutually perpendicular ordinates (the usual X,Y,Z 

typeJ         with which most people are familiar) rather than spherical or cyl-J         indrical 

ordinates (neither of which are really suited to rectang-J         ular TVs),  which conforms to the 

right-hand convention for normalJ         cartisian coordinate spaces (in which tightening  a Z-axis 

alignedJ         screw from above produces a sweep from Y to X) so that rotation in;         X, Y & Z 

will produce proper, not reversed, motion. • � 
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•       E         Minimizing Graphics Overhead -- Display Prioritization  2.2.2•   J         If 
two or more objects are coincident in X and Y but overlap in Z,J         then it is logical that the 

most frontal of them would obscure theJ         rest and be the only one displayed.   Deciding which 

of them is in/         front is called display prioritization.•   J         Priority can be determined  
on an object basis or on an individualJ         pixel basis.  If it is done on an object basis, then 

all pixels inJ         a particular object either have priority or don't have priority enJ         

masse.  This is undesirable since as soon as one object overlappedJ         another, even by one 

pixel, the anterior object would suddenly andJ         completely disappear.  To overcome this 

drawback, the obsured partJ         of the anterior object could be lopped off in the data.   But 

thisJ         would have no advantage, whatsoever, over a simple bit map.  So toJ         preserve the 

obvious advantage of independent motion objects, theyB         must be capable of prioritizing 

themselves pixel by pixel.  J         Pixel display prioritization  can be accomplished in several 

ways.J         The best way is to have each object generator use its Z-coordinateJ         as a weapon 

in a fight for display survival.  The winner gains theJ         right to display its pixel.  On the 

very next pixel, the battle isJ         repeated with more or fewer object generators joining in,  

depend-J         ing upon which of them have a pixel to output on that clock.   AndJ         so on,  

pixel after pixel,  for every pixel in the visible screen.J         This Z-combative method has one 

great advantage:  the battle ragesJ         in parallel.   It matters not whether there are two object 

genera-J         tors in the frey or two hundred.   The length of time it takes forJ         a winner 

to emerge is essentially constant.  Also, the Z-combativeJ         method is self-maintaining,  that 

is, when an object is assigned aJ         new value of Z which moves it closer to the screen,  it has 

simul-E         taneously been given a bigger weapon with which to do battle. •   J         A less 
desirable alternative assigns each object generator a fixedJ         priority based upon its position 

in a serial hardware chain.  ThisJ         idea is passive, not combative.  If the generator with the 

highestJ         priority has no pixel to output, then it passes the display rightsJ         to the 

generator  which has the next highest priority,  and so on.J         As with all such serial chains,  

this one suffers from propagationJ         delays that are additive.  These delays limit the number of 

objectJ         generators which can participate.  Also, whenever an object passesJ         another in 

Z,  so that it becomes closer to the screen, the entireJ         parameter package of the passing 

object and the passed object mustJ         be interchanged.  This is a serious software overhead.  

This hand-J         icap can be relieved somewhat by link-listing parameters, that is,J         by 

providing  an indirect register within each object which pointsJ         to its parameters.  Then, 

instead of interchanging the parameters,J         the pointers are interchanged.   This overhead was 

not needed withJ         Z-combative display prioritization.  It is plain, then, that fixedJ         

chain prioritization is inferior to Z-combative prioritization  inJ         speed, capacity and CPU 

overhead.  I will return to the subject ofJ         fixed-chain -vs- Z-combative prioritization in the 

section dealing,         with the reuse of object generators.� 
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•     J         Another alternative method to assign pixel priority is through theJ         color 
palette.  The idea here is simple: one color is assigned theJ         highest priority, another color 

is assigned next highest priority,J         and so on.  This color palette method is fast and straight 

forwardJ         but it obviously limits the way objects can use color.  It has twoJ         

interesting advantages, though: colors can be mixed directly with-J         in the palette and special 

effects can be created using the color,J         or the lack of color, of overlapping objects.   I 

have more to say&         about this in a later section.    @         Minimizing Graphics Overhead -- 

Scaling & Zooming  2.2.3  J         An object's Z-coordinate can be used for automatic scaling, 

there-J         by enhancing the three-dimensional effect.   This scaling functionJ         is truely 

useful only if fractional values are allowed.  To illus-J         trate, imagine that an object is at 

scale factor one.   Each pixelJ         of data that makes up that object is reproduced on the screen 

full4         sized, ie, with one-to-one pixel correspond-A         ance.  If only integer scale 

factors are al-        +---+ • E         lowed,  then as the object moves  toward the         |   |  
1 • A         screen,  it would reach a  point where scale        +---+ • -  factor would go to two.   At 

that point, the• A         object would double in size.   Each pixel of    +-------+ • D         data 
would produce four pixels on the screen       |       |G         causing the object to literally  leap 

out at       |       |  2 • D         the viewer.  At a scale factor of three,  it       |       |D         
would appear  to jump out once again  as its       +-------+-  size increased by half again.   Not as 

big a• D         jump as before,  but still quite abrupt.  At   +-----------+=         scale factor 
four, the object would jump 25%   |    | • =         in size;  at scale factor five, 20%;  and so   
|    | • G         on.  This jumpping effect would  not be tol-   |           |  3 • =         erable 
until the scale factor reached twenty   |    | • =         (producing a 5%  increase in size).   But 
by   |    | • D         then each pixel of data  would be replicated   +-----------+4         400 
times  (20 times horizontally & 20 timesJ         vertically); very low resolution, indeed.  

Fractional scale factorJ         would relieve the problem; the object could go from scale factor 12         

to scale factors 1.1, 1.2, 1.3, and so on.  J         But even with fractional scale factors there 

would still be severeJ         problems.  First, imagine that the scale factor goes from 1 to 1.1J         

requiring an eight pixel object to generate a ninth pixel.   WhichJ         pixel should be repeated?  

That depends upon whether the object isJ         mostly color or mostly details and on where the 

color/detail tran-J         sitions occur in the string of eight pixels.  Second, the decisionJ         

as to which pixel to repeat is dependent upon its size.  An objectJ         which is small because it 

is far away carries most of its recogni-J         tion by its color.  When the very same object is 

closer and largerJ         its detail will probably be its most important  property.   If theJ         

wrong pixel is repeated,  the object may very well take on a comp-J         letely different  

appearance.   Only the graphic designer can make8         that decision for it is highly object 

dependent.� 
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•       J         And third,  since the object should double in size as the distanceJ         between 
it and the viewer is halved, the scale factor must be non-J         linear.  An approximation to this 

non-linearity is to either shiftJ         the scale factor (equivalent to division by two)  or look it 

up inJ         a Z-coordinate to scale factor software conversion table.  You mayJ         have noted 

that this scale factor adjustment is,  in part, determ-J         ined by the distance between the 

object "and the viewer."  It is aJ         situation very similar to that outlined in perspective 

positioningJ         where the player's field of view was found to affect  the apparentJ         depth 

of the display space.  The differential offset applicable toJ         the display space for 

perspective postitioning and the scale fact-J         or mentioned here are,  essentially,  the same 

things, so that theJ         player's field of view should be taken into account  when figuring          

zoom scale factor, also.  J         So scaling is a function of object size, the distribution of 

colorJ         and intensity across the object,  its Z-coordinate,  the player toJ         TV distance 

and the size of the screen.   It is doubtful whether aJ         single factor can, or should, be 

devised which takes all this intoI         account in hardware.  In short, zooming is best done in 

software.•     N         Minimizing Graphics Overhead -- Rotating, Inverting & Reflecting 2.2.4  J         
Plane polygons can be represented parametrically or topologically.J         With such descriptions as 

a starting point, a generalized rotationJ         algorithm  can be a straight forward proposition,  

but there is noJ         single algorithm which will successfully rotate the complex,  non-J         

polygonal objects that will be in general use.  Rotation is a fun-J         ction of object size and 

the distribution   of color and intensityJ         across the object.   The problem is similar to that 

encountered inJ         zooming, outlined in the previous section.   Since there exists noJ         

single algorithm can successfully rotate all objects, it should be�         handled in software.  J         

Reflection and inversion of graphics is another matter.   GraphicsJ         hardware  should be 

capable of flipping  an object end-over-end orJ         side-to-side.  This will greatly simplify the 

rotational task.  X-J         Y co-planer rotations could be generated  for rotation angles fromJ         

zero to 89 degrees: the first quadrant.  The remaining three quad-J         rants of rotation could 

then be accomplished with combinations  of6         hardware implimented reflection and inversion.� 
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•       8         Minimizing Graphics Overhead -- Clipping   2.2.5  J         What should 

happen if an object starts off-screen?  Logically, theJ         left side should not be seen and the 

right side should extend intoJ         the visible screen.  Since it should be possible to create 

objectsJ         off-screen and then scroll them into the visible area,  then logicJ         dictates 

that there be a boundary  area to the left of the visibleJ         screen that is as wide as the 

widest object that can be created byJ         the graphics system.   Since permitting objects to be 

the width ofJ         the TV screen has an obvious advantage, this boundary area must beJ         as 

wide as the screen.  This implys the existance of a virtual co-J         ordinate space that is twice 

as wide as the visible screen,  thus:  C          <-- x negative   x positive --> That part of the 

object to• =  +---------------+---------------+ the left of  the TV screen• *         |  | 

 | must be used up by the end*         |  |  | of  the blanking interval.>         

| ***************** motion| This could be accomplished>         | **** object ***** ----->|

 by "wasting" the pixels to8         | ***************** | the left  of the screen at*         

|  |  | a rate eight  times higher*         |  |  | than the 

pixels would nor-*         |  |  | mally be generated.  If anD         +--X-BOUNDARY--

-+-----SCREEN----+ X-boundary isn't provided,D         <- horizontal -> <---- scan ----> the 

graphics data  must be?             blanking           time  fiddled with,  one line at• 9               
9.3        54.2  a time, to make the object• 8           micro-seconds    micro-seconds come 

out right.  J         An analogous situation  requires this virtual space to be twice as)         high 

as the visible screen, thus:•   '                 +--------------+      •̂ =               ^ |        

|      |  Those parts  of the object• =               | |        Y      |  that  

are above the screen • F               y |  **********  |   vertical must be used up by the endF        

         |  **********  B   blanking of  the vertical blanking.C               n |  **********  

D     1.2 This could be accomplished• D              e |  **********  R    milli- by 

"wasting" lines sixteenE               g |  * object *  Y   seconds times faster than they 

are• C                 |  **********  |      |  normally  generated during• C                 
+--**********--+      X  the active screen.   With-• C                 |  **********  |      

|  out such a Y-boundary,  it• C               y |  **********  S    scan will be 

necessary to alter • C                 |motion|       C    time an object's length and its• C               
p |      |       R    15.5 data address pointer  on a• E               o |      v       E    milli-
 line by line basis to make• >              s |        E   seconds the graphics come 

out cor-*               | |        N      |  rectly.!               v |        |      

| • '                 +--------------+      v• � 
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•       J         Likewise, the virtual space should be twice as deep as the maximumJ         depth 
displayed  to allow objects created at infinity to move for-J         ward into visible space and to 

prevent  objects  moving in and out:         from piling up at the front or back of the screen.  J         

So the virtual display space should be eight times larger than theJ         region which is displayed.   

It should be noted that objects whichJ         spill off to the right  or the bottom  do not require  

boundaries.J         They will naturally  be terminated  by the end of the scan line orJ         the 

end of the screen; however, they should not be allowed to wrapJ         around to the next line or the 

next screen.   This should not pre-J         clude the possibility of intentional wrap around in the 

data; this.         situation which will be covered later.    :         Minimizing Graphics Overhead -

- Stenciling   2.2.6  J         Any high performance graphics system worth its salt 

should be cap-J         able of stenciling one object by another.  Stenciling is analogousJ         to 

masking, but more powerful and efficient.  It is best explainedJ         by example.   Suppose that in 

the course of a first person advent-J         ure game, the player finds himself or herself in a dark 

cave.  TheJ         player must find a pot of gold and simultaneously avoid the attackJ         of a 

vampire bat.  The player can see only by flashlight.  The potJ         of gold and the bat are motion 

objects while the sides of the cave-         are described by a scrolling bit map. •   J         The 
circle of light thrown out by the flashlight is a third motionJ         object which stencils the cave 

bit map, the pot of gold & the bat.J         As the circle is moved about, only that portion of cave 

wall with-J         in its circumference is visible.  Likewise, the circle defines theJ         

visibility  of each pixel of bat and pot.   All of the objects areJ         "there" all the time; the 

game programmer need not manipulate themJ         in any other than moving the bat around.   But the 

circle of lightJ         stencils them thereby eliminating  them from the output,  pixel byJ         

pixel, for each pixel that is not coincident with it.  TechnicallyJ         speaking,  stenciling 

produces the topological intersection of theJ         stenciling object and the stenciled objects.  In 

this way a planetJ         of blue,  to represent water, could stencil a bit map representingJ         

its continents and cities.  As the bit map is scrolled, the planetJ         would appear to revolve 

... only the portion of bit map coincidentC         with the planet's outline would show and be 

overlaid on it.•     B         Minimizing Graphics Overhead -- Collision Detection  2.2.7  J         

Hardware collision detection is a controversial  subject.   On oneJ         side of the controversy 

are hardware engineers who, generally, areJ         strong advocates; it's neet.  On the other side 

are game designersJ         who have had experience  with hardware collision detection;  it isF         

utterly counterproductive and has no socially redeeming value.� 
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•       J         All hardware collision detect schemes with which I am familiar areJ         basically 
embodiments  of the old 'video coincidence' idea.   ThatJ         is,  at the time of video output, 

all the object generators 'look'J         to see if the pixel they are currently  sending  out is 

coincidentJ         in time with the pixel being generated  by any other object gener-J         ator.  

If it is, they raise their collision detection flags.  ThisJ         'video coincidence' scheme can be 

nicely  integrated  into displayJ         prioritization, hence, it is a very attractive idea and 

keeps get-J         ting reinvented and incorporated  into new video system designs byJ         

enthusiastic and well-intentioned engineers.   From a purely hard-J         dware viewpoint, automatic 

collision detect makes sense.  But from=         a gaming point of view it is useless for two 

reasons. •   J         First,  for all practical purposes, hardware collision detect mustJ         be 
two screens behind the actual game action.  This produces gamesJ         with distinctly slow reaction 

times.   The first screen lag is, ofJ         course, the screen in which the actual collision 

occurred (call itJ         the collision screen).   The second lag results from the fact thatJ         

during the collision screen, the game formats the following screenJ         (call it the post-

collision screen).   At the end of the collisionJ         screen the post-collision  screen is sent to 

the graphic hardware.J         Only then can the game check for and discover the collision.  ThenJ         

it can use the fact of the collision in formatting  the post-post-J         collision screen, but by 

then it is too late.  What is needed is aJ         collision look-ahead that can be used to 

appropriately  format theJ         collision screen itself.   This look-ahead is successfully done 

inJ         software.  Before a screen is even created, collisions are checkedH         and the 

outcome is then passed to the screen formatting routine.  J         This software collision detection 

also successfully  overcomes theJ         second drawback of hardware collision detection --  

unreliability.C  For "video coincidence" to work, the colliding objects must be co-• J         incident 
during the collision screen.   This will not, usually, beJ         the case.   Fast moving objects can 

often pass through one anotherJ         between screens -- apparently just interchanging  their 

positions.J         To ensure that a collision will not be missed,  each object gener-8         ator 

must have the following a priori knowledge:  D         1, its trajectory in the form of its velocity 

and direction,?         2, the trajectories of all other objects on the screen, • J         3, its 
cross-sectional profile  taken perpendicularly  to the lineJ            segment drawn from its 

geometric center to the geometric center,            of each of the other objects and,J         4, the 

cross-sectional profiles of all other objects taken perpen-1            dicularly to those same line 

segments.• � 
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•       J         For 20 objects, each object generator would have to "know" 20 setsJ         of three 
velocity   vectors each and would require a means of rep-J         resenting and storing 20 cross-

sectional profiles.   These must beJ         updated for each screen.  Each would 

hen compare the 'other' pro-J         files against  its 'self' profile  in a mannar analogous  to 

videoJ         coincidence.  Further, each object generator must be able to trackJ         these 

cross-sectional  profiles  between screens.   Each generatorJ         would then be much larger  than 

20 non-collision-detecting  object1         generators.  This is clearly impractable. •   J         
Various schemes for getting around this problem have been proposedJ         involving  'padding' each 

object with a 'collision-space' which isJ         larger than the objects themselves  and then 

detecting  collisionsJ         between 'collision-spaces'.   Without detailling the required dis-J         

tortions to the 'collision-spaces' to account for relative motionsJ         (everything from 

'collision-planes' to egg shapes have been tried)J         let it suffice that all approaches  tried 

have resulted in a worseJ         situation  than missed collisions.   They have produced  erroneous<         

collisions during what should have been near misses.  J         The verdict on hardware collision 

detection, as passed down by allJ         experienced game designers of my aquaintance,  is,  "I'd 

rather doJ         it myself."  With Atari's present products, hardware collision de-J         tection 

is either not used (the choise in fast moving games) or itJ         is used merely as a flag to 

indicate that soft collision detectionJ         'may' be needed and should be checked.  "If it may 

ever need to beJ         checked", game designers say, "for consistent and reliable program=         

timing, it should always be checked ... in software." •     G         Minimizing Graphics Overhead -- 
Reusing Object Generators 2.2.8•         ?         Minimizing Graphics Overhead -- Special Effects 
  2.2.9•         F         Minimizing Graphics Overhead -- General Considerations 
 2.2.10  J         There are various ways of formatting graphic parameters; the meansJ         

used can have a significant  impact upon the overhead the hardwareJ         introduces into the CPU's 

life.   Formats with consistent, simple,J         straight forward structures and which have liberal 

rules regardingJ         their usage will yield programs that are easier to write, that areJ         

more nearly bug free and that run faster.   Graphic parameters can!         be classified as 

follows: •   '          1, Object position and offset,• "          2, Object attributes and,(          

3, Object processing functions.  J         Positions  and offsets are used to place the object(s)  

referencedJ         in the display space.   To maximize the flexability  in which theyJ         can be 

used and to minimize the CPU time spent manipulating  them,J         positions  and offsets should be 

usable either individually  or inJ         combination.   Taken individually, each should be fully 

capable ofJ         spanning the entire display space.  To put it the other way, takenJ         

together, position plus offset should be capable of spanning twiceJ         the display space.  For 

example, if the X-dimension of the displayJ         space is 11 bits in extent,  that is,  the object 

can be placed atJ         any one of 2048 X-coordinates,  then both X-position  and X-offsetJ         

should be 11 bits long.   You may ask why this apparent redundancyJ         is important, or even 

desired.   The reason is that if both are 11J         bits long,  the game designer  has several 
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options in their usage.J         The position can be zeroed out and the offset used alone, the off-J         

set can be zeroed out and the position  used alone or the positionJ         and offset  can both be 

non-zero so that they are used in combina-J         tion.   If both are the full 11 bits in extent, 

then the three op-J         tions are equally capable of placing  the object at any X-coordin-!         

ate point in the display. •   J         Suppose that the 11 bit X-position is a signed quantity,  that 
is,J         the 2048 values  of X-coordinate  range from -1024 to +1023.   TheJ         most 

significant bit is its sign bit.   If this 11 bit value is toJ         be stored in a 16 bit memory 

word, then the sign bit should be the*         most significant bit of that word:  (             

like this      not like thisI         +=-=-=-=-=-=-=-=-=-=-=+=-=-=-=+   +=-=-=-=+=-=-=-=-=-

=-=-=-=-=-=+ • B  |     X-POSITION      |       |   |       |     X-POSITION      |I         +=-=-=-=-

=-=-=-=-=-=-=+=-=-=-=+   +=-=-=-=+=-=-=-=-=-=-=-=-=-=-=+ •   J         The left-hand method of storing 
X-position  gives a testable  signJ         bit that will immediately indicate whether the object is 

currentlyJ         residing in the positive or negative halves of object space.  This%         will 

streamline the software.•   J         Finally, all positions and offsets should be binary numbers.   
TheJ         fact that engineers love to use polycode numbers because this res-J         ults in 

smaller hardware should not mandate saddling  the softwareJ         with bulky, time consuming binary-

to-polycode & polycode-to-binaryJ         conversion routines.   It is better to impliment these 

routines inJ         hardware and leave the software unencumbered.  After all, hardware)         is 

but once; software is forever.•   C         Object attributes include such things as height, width, 
map• �         dimensions  H         Object parameters are usually directly addressed.  The following+         
is an example of direct addressing: •   ,          OBJECT_NUMBER:     OBJECT_PARAMETER  J         

In this example, graphics memory location 'OBJECT_NUMBER' containsA         the 'OBJECT_PARAMETER' 

related to that object.  But, this• D         parameter is known only to object number 'OBJECT_NUMBER' 
andH         cannot be shared with another object.  Address pointers are usedJ         to indicate the 

locations of object parameters which are shared byG         several objects at once.  An example of 

this is the X-POSition, • J         sited previously, which defined the X-coordinate of a formation ofE         
objects and, therefore, was shared by all the objects in that • �         formation.*         Pointers 
which can span the entireD         range of the graphic memory are superior to offset, paged orI         

segmented memory usage.  For example, suppose that graphic memory • D         is 16K words in extent.  
This requires the use of 14 bits ofE         address.  From a purely software point of view, it would 

seem • H         logical to have an associated address parameter which is 14 bits�         in length 
like this:  +          OBJECT_NUMBER:     ADDRESS_POINTER •  
          :-          ADDRESS_POINTER:    OBJECT_PARAMETER•   J         In this example, graphics 
memory location 'OBJECT_NUMBER' contains@         a 14 bit quantity, 'ADDRESS_POINTER', which the 

hardwareI         interprets as a second address, also in graphics memory.  At this • A         second 
address (called the indirect address) is found 'OB •   8         But harware engineers feel compelled to 
minimize@         memory usage by compacting such address pointers withoutJ         considering the 
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impact such compaction has upon the software.  ForA         example, the 14 bit address could be 

compacted like this: •   "          OBJECT_NUMBER:     OFFSET 

          :2          OBJECT_NUMBER+OFFSET:    OBJECT_PARAMETER    '          OBJECT_NUMBER:     

PAGE_NUMBER•  
          :4          PAGE_NUMBER+OBJECT_NUMBER: OBJECT_PARAMETER    -          OBJECT_NUMBER:     

ADDRESS_POINTER/4•  
          :-          ADDRESS_POINTER:    OBJECT_PARAMETER•     I         Adopting the conventions 
outlined above will go a long way toward • D         minimizing the numbers of routines that a game 
designer mustG         write, debug, and integrate, thereby reducing the complexity of • E         the 
software and the length of time writing it, improving its • E         reliability, minimizing CPU 
overhead and the amount of memory • H         required and, throughout the life of product, saving 
money.  TheJ         hardware costs are minisule compared with the savings that will beI         made 

in each and every piece of software to run on that hardware. •   � 
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•       ;         Minimizing Graphics Overhead -- Conclusion   2.2.11 •   J         The 
execution of the graphics functions outlined in the preceedingI         sections combined the 

application of hardware and software.  Some • F         functions are most efficiently performed by the 
hardware whileC         others can be done best by the software, thereby giving the • J         
programmer the control he or she needs. Here is a rundown of them:  8            HARDWARE  

FUNCTIONS       SOFTWARE  FUNCTIONS;          Horizontal Positioning     Perspective 

Positioning• 2           Vertical Positioning             Zooming4          Display 

Prioritization             Rotation3                Reflection       Collision Detection • �                
Inversion"       Clipping off-screen graphics�                Stenciling•   �             

SHARED  FUNCTIONS• �             Reuse of Graphics • �       Special Effects•   G         
Part 1 of this chapter established that the use of graphics RAM • G         that is separate from the 
main system RAM will allow the CPU to • G         operate at full speed, even during the active screen 
time.  Now • H         we know what the CPU will do with that time, asside from playing�         the 
game.•   H         Some of the important features of the graphics system are now in
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         focus:  J         1, A self-maintaining three-dimensional display space based upon a.            

right orthogonal coordinate system,J         2, A virtual positioning space eight times larger than 

the displayC            space in which the display space is the positive octant, • H         3, 
Automatic generation of independent motion objects within the�            virtual space, • I         4, 
Automatic grouping and maintenance of super-objects made up of• 6            numbers of the motion 
objects in formation,J         5, Automatic display prioritization of objects based upon their Z-5            

coordinates on a pixel by pixel basis and, • F         6, Built in aids to graphic object management for 
the reuse of�            object generators.• � 
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•       6         Minimizing Graphics Overhead -- OMNI    2.2.12        ?                          

......................................• A                      . '                                       

`. • C                 .  '                   -511                      `.• E            . '                           

:                         `.• G       . '                                :                           

`. • I   .'. . . . . . . . . . . . . . . . . . .:. . . . . . . . . . . . . . .`. • I   .                      

:               |                    :         . • I   .                      :               |                    
:         .• I   .                      :               |                    :         . • I   .                      

:               |                    :         . • I   .                      :               |                    
:         .• I   .                      :               |                    :         . • I   .                      

:             -y|                    :         . • I   .                      :               |  
255_______________:         . • I   .                      :               |  /                 \         

. • I   .                      :               |z/                   \        .• I   .                      

:               |/                     \       . • I   .       -1023______________-
x__________!_________x_____________\1023  .• I   .                      .              

/|XXXXXXXXXXXXXXXXX///   |      . • I   .                      :             / |XXXXXXXXXXXXXXXXX///   

|      . • I   .                      :          -z/  |XXXXXXXXXXXXXXXXX///   |      .• I   .                      

:           /   |XXXXXXXXXXXXXXXXX///   |      . • I   .                      :          /   
y|XXXXXXXXXXXXXXXXX///   |      . • I   .                      :         /     |XXXXXXXXXXXXXXXXX///   

|      . • I   .                      :      -255     |XXXXXXXXXXXXXXXXX///   |      . • I   .                      

:               |XXXXXXXXXXXXXXXXX/// 243      . • I   .                      :               
|//////////////////// 289      .• I   .                      :...............|                6  7   

|      . • I   .                     '                |         this   4  7   |      . • I   .                   

.                  |        'cube'  7  1   |      . • I   .                  '                   |        

is the         |      . • I   .                .                     |       positive        |      

. • I   .               '                      |        octant         |      . • I   .             .                        

!_______________________!      .• I   .            '                        511                       

.     .• I   .          .                                                          . • I   .         

'                                                      `    . • I   .       .                                                         

.   .• I   .      '                                                              . • I   .    .                                                             

`  . • I   .   '                                                               . .• I   . .                                                                   
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